

G A I \ l \ e S S T U D I O

U s e r M a n u a l

Writ ten By : Danie l Navarro Medrano

UK Edited By: Leo Zullo. Jon Silvera & Mike Green

Published By: FastTrak Software Publishing

TTiis manual, ana ine sarr«&iv umcnuau tm manual an Al n^its are reearveu No pari el ffas manual or ma
dc&cn&«d sofTMiHo may be cooM reixoducM. t rsAsia ied a reouccd to any eteci rorec meourt or any r r iachtne reaoacie form
wilhoul prjor wrITiert consent of Hemmer Tecnnĉ ogies ̂ 2000 cv PaSlTtak Ŝ iypiore Publishing

Page 1

Thank you tor purchasing DIV Games Studio. The product is the result ot over two years ot
continuous hard «rork by a team ot people who have done their best to make their dream
c o m e t r u e .

Programming has a bad reputation ot being a complicated and dark field, even more so
when it comes to games. The reason for such an image is the lack of information and the
secrecy of the alleged geniuses who have the knowledge. We are not geniuses. We make
games because we like them and we would like lo share with you the information we have
about our hobby.

One day someone Imagined a tool to create computer video games which would
contain all the necessary utilities.

Everything started with the idea ot inventing a new programming language, the first
specifically designed tor the development of video games. Many options were considered,
and all existing programming languages were thoroughly studied with the aim of coming up
with a new concept. A language which could be accessible to beginners and at the same
time powerful enough to achieve professional developments.

The result ot that search is the DIV programming language: a compromise between
several options. The main problem was to determine which particular features video games
had in common which are not shared by the rest ot the programs. This was essential in
order to design a language which would make video games development easier.

Video games are probably the only type ot computer programs that share less things in
common with one another. Therefore the first decision had to t>e about the type of video
games that the language was to include since only a general purpose language would be
able to include every imaginable game.

Did this challenge have any sense f/ien? Well, it seems that it did. The constant features
of video games are the use of graphics on the screen and the programming of movement,
animation, sound and so on. DIV is focused towards these common features.

However, DIV Games Studio is much more than a programming language. It is a graphics
environment where you can start developing a game and finish it without ever exiting DIV.
We have tried to put everything into it that our imagination could conceive, and we almost
did. I say almost because quite a tew ideas have had to be left out. The only consolation we
have is that perhaps tomorrow, in a new version, those ideas could be added.

But that's something that right now is out ot our hands. Now it is up to you. It's up to you lo
become captivated by DIV Games Studio, and to really enjoy and utilise our work. That was
the hope that encouraged us to make it all the way here.

Our aim was lo develop a simple tool to use, so that it only requires the user to have a
passion tor video games.

We have put everything we have into DIV and the product is intended to be easy to use.
professionally finished and at a very competitive price.

We think that DIV is the best way to learn how to program and at the same time the most
entertaining one.

Page 2

If there isn't a creator in you, we won't be able to make you develop incredible graphics and
programs which could become amazing games. But if there is that creator in you, we will
provide you with everything you need to make it come out.

You may be surprised by the great number of sample games that are included with DIV
Games Studio. The reason why we have included all these games is that we feel that the
only way to really learn something is to see It working. Those of us that have been working
in programming for some time now are addicted to it and all of us have learned by watching
o t h e r s .

The games that we included are not very complex - they are just examples of some of the
things you can do with DIV. None of these games use even 20 % of the real possibilities
DIV provides. We have tried to represent most of the typical styles of video games and you
can learn a lot from them. Although the truth is that we have so much fun developing them
that the only reason we haven't made more is because we weren't allowed to (budgets, you
know).

What can I expect to get from DIV Games Studio? That's a good question. Well, we think
that at first you should just take it as a game, an adventure, you should investigate whatever
you feel like, try plenty of things and if eventually you decide to make some kind of serious
work, even professional, you can be sure that DIV will not disappoint you.

Perhaps you'll be responsible for the next successful hit. That's up to you now. We will be
waiting for you.

le/OGzc ^JKecfr^

C H A P T E R 1

I n t r o d u c t i o n .

1 . 1 I n s l a l l a t i o n o f D I V G a m e s S t u d i o 8
1 . 2 i n t r o d u c t i o n t o t h e g r a p h i c e n v i r o n m e n t 1 5
1 . 3 C o n fi g u r a t i o n o f t h e e n v i r o n m e n t 2 2
1 . 4 E x e c u t i o n o f t h e s a m p l e g a m e s 2 5

C H A P T E R 2

The Menu System

2 . 1 T h e p r o g r a m s m e n u 4 0
2 . 2 T h e e d i t m e n u 4 3
2 . 3 T h e p a l e t t e s m e n u 4 6
2 . 4 T h e m a p s m e n u 4 8
2 . 5 T h e fi l e s m e n u 5 1
2 . 6 T h e f o n t s m e n u 5 3

2 . 7 T h e s o u n d s m e n u 5 6
2 . 8 T h e s y s t e m m e n u 5 6
2 . 9 H e l p o p t i o n 5 8
2 . 1 0 P r o g r a m s d e b u g g e r 5 9

C H A P T E R 3

The Graphic Editor. First steps

3 . 1 G e n e r a l c o n c e p t s 6 6
3 . 2 C o l o u r p a l e t t e s 6 7
3 . 3 T r a n s p a r e n t c o l o u r 6 8
3 . 4 B a s i c c o n t r o l s 6 9
3 . 5 G e n e r i c i c o n s 7 1
3 . 6 C o l o u r r a n g e s 7 2
3 . 7 U s e o f c o l o u r m a s k s 7 3

C H A P T E R 4

The Graphic Editor

4 . 1 D o t t i n g a n d p e n b a r s 7 6
4 . 2 B a r s f o r l i n e s a n d m u l t i l i n e s 7 7
4 . 3 B a r s f o r c u r v e s a n d m u l t i c u r v e s 7 8
4 . 4 B a r s o f r e c t a n g l e s a n d c i r c l e s 7 8
4 . 5 S p r a y b a r 7 9
4 . 6 F i l l i n g b a r 8 0

4 . 7 B l o c k s e d i t b a r 8 2
4 . 8 U n d o b a r 8 7
4 . 9 T e x t b a r 8 8
4 . 1 0 C o n t r o l p o i n t s b a r 8 8
4 . 1 1 A n i m a t i o n s e d i t 8 9
4 . 1 2 T r i c k s a n d a d v a n c e d d r a w i n g t e c h n i q u e s 9 0

C H A P T E R 5

Creating Programs. Basic Concepts

5 . 1 D e fi n i t i o n o f a p r o g r a m 9 6
5 . 2 D e fi n i t i o n o f d a t a 9 6
5 . 3 N u m e r i c v a l u e s a n d e x p r e s s i o n s 1 0 0
5 . 4 D e fi n i t i o n o f a c o n s t a n t 1 0 1
5 . 5 N a m e s 1 0 2
5 . 6 I t e m s p r e d e fi n e d i n t h e l a n g u a g e 1 0 2
5 . 7 S t a t e m e n t s 1 0 3
5 . 8 C o n d i t i o n s 1 0 4
5 . 9 C o m m e n t s 1 0 5
5 . 1 0 F u n c t i o n s 1 0 6
5 . 1 1 P r o c e s s e s 1 0 9

C H A P T E R 6

A Practical Example

6 . 1 T h e g r a p h i c w o r k 1 1 2
6 . 2 T h e fi r s t t e s t s 1 1 3
6 . 3 f t ^ o v i n g t h e s p a c e c r a f t 1 1 4
6 . 4 C r e a t i n g m o r e p r o c e s s e s 1 1 5
6 . 5 A d d i n g e n e m i e s 1 1 6
6 . 6 R e t o u c h i n g t h e p r o g r a m 1 1 8
6 . 7 D e s t r o y i n g p r o c e s s e s 1 1 9
6 . 8 L a s t m i n u t e c h a n g e s 1 2 0
6 . 9 L i s t o f t h e p r o g r a m 1 2 1

C H A P T E R 7

Structure Of The Programs

7 . 1 H e a d o f t h e p r o g r a m 1 2 4
7 . 2 D e c l a r a t i o n o f c o n s t a n t s 1 2 4
7 . 3 D e c l a r a t i o n o f d a t a 1 2 5
7 . 4 M a i n c o d e 1 3 0
7 . 5 D e c l a r a t i o n o f p r o c e s s e s 1 3 1
7 . 6 L i s t o f s t a t e m e n t s 1 3 3

7 . 6 . 1 A s s i g n m e n t s t a t e m e n t 1 3 3
7 . 6 . 2 I F s t a t e m e n t 1 3 5
7 . 6 . 3 S W I T C H s t a t e m e n t 1 3 6
7 . 6 . 4 W H I L E s t a t e m e n t 1 3 7

Pages

7 . 6 . 5 R E P E A T s t a t e m e n t 1 3 8
7 . 6 . 6 L O O P s t a t e m e n t 1 3 9
7 . 6 . 7 F O R s t a t e m e n t 1 3 9
7 . 6 . 8 F R O I V l s t a t e m e n t 1 4 1
7 . 6 . 9 B R E A K s t a t e m e n t 1 4 3
7 . 6 . 1 0 C O N T I N U E s t a t e m e n t 1 4 3
7 . 6 . 1 1 R E T U R N s t a t e m e n t 1 4 4
7 . 6 . 1 2 F R A M E s t a t e m e n t 1 4 5
7 . 6 . 1 3 C L O N E s t a t e m e n t 1 4 7
7 . 6 . 1 4 D E B U G s t a t e m e n t 1 4 8

C H A P T E R 8

Creation of programs. Advanced concepts

8 . 1 T y p e s o f p r o c e s s e s 1 5 0
8 . 2 I d e n t i f y i n g c o d e s o f p r o c e s s e s 1 5 1
8.3 Ways to obta in t t ie ident i fy ing code of a process 152
8 . 4 C a l l t o a p r o c e s s 1 5 4
8 . 5 H i e r a r c h i e s o f p r o c e s s e s 1 5 5
8 . 6 S t a t e s o f a p r o c e s s 1 5 5
8 . 7 U s e o f a n g l e s i n t h e l a n g u a g e 1 5 6
8 . 8 A t i o u t t h e c o n d i t i o n s 1 5 7
8 . 9 E v a l u a t i o n o f a n e x p r e s s i o n 1 5 7

A P P E N D I X A

Summary of the Syntax of a program.

A P P E N D I X B
Functions of the language.

A P P E N D I X C

Data predefined In the language.

A P P E N D I X D

S u m m a r y o f k e y b o a r d c o m m a n d s 2 6 8

A P P E N D I X E

F o r m a t s o f a r c h i v e s .

A P P E N D I X F

D I V G a m e s C D - R O M C o n t e n t s .

Chapter :
I n t r o d

C H A P T E R 1 : I n t r o d u c t i o n

This (ifsi chapter will give you directions on how to install the program onto your computer
and how to configure it so that it works optimally. The chapter also presents the basic
concepts that will allow you to get to gnps with the program from the very Degmning.

1.1 Installation of DIV Games Studio

To lunction correctly this program needs the following minimum system requirements.

P r o g r a m t e c h n i c a l r e a u l r e i r i e n l s

• 40$ processor or higher iPeniium recommended).
• MS DOS or Windows'" 95/98 operatng system
• 0 MB RAM memory (16 MB recommended).
• 30 MB tree space in the hard disk (146 MB recommendod)
• 2X CD-ROM or higher.
• Microscll'" eompatiblB mouse.
• SVGA Graphics card.
• Recommended: a sound card compatible with Sound Blaster'" or Gravis

Ultrasound'".

The program could possibly be installed in PC's wiih lower processors (from a 386 with 4
f/B memory), but Ihe results will cehainty be unsatisfactory.

This is a program of development and therefore you must always have additional space in
the hard disk for the developments. You will need it to create, compile and run the
programs. We recommend not lo use the program if Ihe free space in the hard disk (once
the program has been installed) Is less than 4 MB. Otherwise some options of the program
may not work or run incorrectly.

I n s l a l l a l l o n

Inslalling DIV is very simple. All you need is to
execute the program 1NSTALL.EXE from the CD-
ROM and indicate the drive, directory and type of
installation you wish to do.

Page 8

d j
S T U . O t Q ;

%

4 6 J « e w i e i w e i i n e r i * M " H T t C 1 i i " > U I M " »

M S - D O S u s e r s

First enteritie drive unit which corresponds to your CD ROM drive, lor instance, II your CD-
ROM unit Is D. then type:

0 ; .

Then, press Enter, and alter that execute the installation program using the loliowlrtg
s t a l o m e n i :

I N S T A L L

Next, you press Enter again and the screen ol the installation program presentation will be
displayed.

W i n d o w s 9 S r 9 8 U s e r s
You can execute the program In diflerent ways, lor example, Dy clicking on the Icon MY
COMPUTER, and then choosing the CO-ROM where DIV Games Studio should be showing
(both times by a double click on the left side ol the mouse).

The program INSTALL.EXE will appear In the content Ol the CD-ROM unit. Double click on
that program and the screen of the Installation program presentation will be displayed.

O n c e t r i e i n s t a l l a t i o n o n x i r a m h a s t i e e n e x e c u t e d (a l l u s e r s !
This installation program is controlled through the
mouse. Click anywhere on screen with the mouse or
press a key and the installation main screen will be
displayed.

The screen will be shown divided in several parts:
the hard disk chosen to Install the program, the
name of the target directory (or the folder for the
program), the selection of ihstailed components and
the program options.

Follow these steps to Install the program:

• If your PC has got more than one hard disk. ctKXise one to install Ihe program. To do
this, you have to click on its' icon with the mouse.

• Alter that, it you do not want the program to be Installed In a directory (folder) called DIV.
enter the name ol the directory in the center box text of the window (whore the blinking
cursor appears). II it doesn't matter to you which directory the progiam is Installed, you
can leave it In the directory DIV. which is the programs default.

• Alter selecting the components which are going to be Installed in your computer, you
must keep in mind that the space tfiese components take (shown In the lower right side
of the screen as TOTAL) must bo less than the free space on the hard disk you have
selected (shown underneath the hard drives' icon).

m m • $! * m m m m

• •

I n s r a i l a l i o n s c r e e n

Page 9

C fi o o s i n o t h e i n s i a l l a l i o n
The program archives are grojped Into live categories: System. Examples. Fonts.
A r t w o r k a n d S o u n d

All of Ihcm have three small buttons that indicate the type ol installation lhal can be
performed, install all the archives of these category (Max), Install a good combination
bolwoon performance and space taken (Med) or install the minlrnum possible number ol
archives (MIn). 6y default, the program will suggest the maximum installation tor all the
catogorlos

For nil Itieso calogones the space required lor the Installation chosen is expressed In MB
(mogabytes ol hard disk space). These five categories retor to the Icllowing groups of
a r c h i v e s :

System: it refers to the DIV main and generic archives. Most of them are included in the
minimum Instaliailon since they are essential lo run the program. The
installaiions Medium and Maximum include, apart from these, a higher number
of extras, such as wallpapers and colour palettes.

Examples, here are the game examples which can be installed in the Games directory.
They cannot be run directty from the CD-ROM and you will only be able to see
those you install.

Since the games lake a tot ol space, you can click
on the EXAMPLES to gel a window where you can
specify which particular games you would like to
install. If you don'l install all Ihe games at this time,
you may Insta l l them later. We recommend the
Ins ta l l a t i on o f a t l eas t t he t u to r i a l ones wh i ch w i l l be

very useful to learn how to use OIV language.

In case you would like more Information about Ihe
games lor the purposes of Installation, you can find
a description of the mam games at Ihe end of this
chapter.

Fonts: In this category are the ditterent kinds of fonts available to write text wlthm the

games. The Minimum installation wilt Install a small selecllon of fonts while the
Maximum will install all available types.

Artwork: those archives Include Ihe graphics for games, some of DIV's own games
examples and many other new graphics thai you can use in your games without
t h e n e e d t o d r a w t h e m .

Sounds, this last category refers to archives containing sound effects ready to be used in
tho games. II you don't have a sound card, it will be belter lor you not lo Install
them (thus choosing the Minimum installation) because you will be able to instal)
them in the future if you decide to purchase a sound card (which we strongly
encourage).

S&lecllon of parnes oxamples

Page 10

R e c o m m e n d e d i n s l a l l a l t o n

If you fiave a big bard disk wilfi a lot of free space, we recommend Ifie Maximum
insiatiallor) (complete installatiorr of tfie program).

If the space In your disk is more limited, we recommend the following installation:

Syilem Select the maximum installation lor this category.
Example*, pick the ones you like best (but include the tutorials).
Font*. Artwork and Sound: Select the minimum installation.

Whenever you would like to access the letter fonts, the graphics or the scurtds for the
games, you can read them directly from the CD-ROfifl of DIV Games Studio, selecting the
eorrespondirtg unit and directory (DATA\IFS lor fonts, DATA \ MAP for artwoili and
DATA\PCM for sound).

• Once all these elements have been selected, click on INSTALL to i>egln the program's
installation. This operation will take a lew minutes, depending on your PC and of the type
o f I n s t a l l a t i o n c h o s e n .

• Finally, the program will indicate that the installation has been completed: then click
ACCEPT to exit the Installation program.

Note: You can always install the program agun whenever you wish to add new
elements (such as sample games that were not originally Installed). To do that you
need to follow this same process. You will not lose any work already performed in
DIV, with tt>e exception of the example programs which will resume to their ohginal
Slate (if you install them again) and therefore you could lose all changes you have
m a d e t o t h e m .

O I V G a m e s S t u d i o E x e c u t i o n

The program is already installed In your computer. All you have to do now is to execute it.
For that, please follow the instructions below:

U s e r s o f M S - D O S

• Go to the hard disk wtiere you installed the program. For Instance, II it is C, you can do it
by typing C: and pressing Enter.

• Go to the directory where the program was installed. For example, it It is OIV type CO
DIV and press Enter.

• Now execute the program Oy typing D and pressing Enter.

Page 11

Note lor advanced users: if you include the directory ot the program in the
environment variable PATH (in the lite autoexec.bat), you can execute DIV Games
Studio from any directory. When you exit the program, it will be back again to the
original directory.

Use rs o f W indows QSrSS
First 0) all. close the window ol the program ol insinuation, which you don't need now, and
d o a s l o i i o w s :

From the icon MY COMPUTER access the unit and folder where you installed the program
(as you did wlien you executed the installation progiam). Once you are in the program
tolder, click twice on D.EXE to execute the program.

In the program folder you will also see an icon that can be dragged onto your desktop to
create a shortcut. This will save you time In opening up DlV Games Studio.

Note: we recommend not to use ALT+TAB to go to another application from DIV.
because somelimes, Windows will not restore the screen correctly when you return to
the program later. In this case, press ALT+X and then Enter to exit the program and
then execute it again {this way you will not lose the Information when performing this
operation).

I n g t a l l a t l o n l l k e l v p r o b l e m s

You should not find have any problems in installing the program if you correctly toliow the
steps atmve.

Should you have any problems, please check the minimum requirements for the program
stated earlier, if you nave any doubts about any ol the elements, please contact your
computer technical service or supplier,

II you are using Windows and you have any doubts atroul the installation process, we
strongly advice to took at Windows Help to solve any doubts you may have.

Important: you may have some problem reading the CO-ROM with the reader unH. If
this happens, just wipe the OIV Games Studio CO surface using a dean and dry cloth
and try Insiatling the program again.

Page 12

It you were not able to install the program ana you have plenty ot tree space in your hard
disk (enougn lor the program Maximum inslal!ailon|. you could try a manual Irtsiailallon ol
Iho program. Follow these steps:

M S - D O S u s e r s

Go 10 the CD-ROM unit using (if your CD-ROM unit is D):

D :

AND press Enter. Then type the following commands (if your hard disk unit is C):

X C O P Y D A T A r . - C : \ D I V \ * . * I S

C :

C D D I V
D E L I N S T A L L

You must press Enter after each one ol those commands. If you have enough free space
available the program will be installed with no problem. To run It. introduce the following
c o m m a n d :

D / S A F E

For fuiuro oxocuiions ol the program, just follow the rogulnr Instructions.

U s e r s o l W i n d o w s 9 5

Open a session of MS-DOS (either by clickihg twice on iis Icon or from the menu start \
programs \ MS-DOS) and lollow the instructions for MS-DOS users. For future executions,
you may follow the instructions of your operating system, taking into account that the
program will be installed in the folder DIV of your hard disk.

Note: if you are not able to Install the program after trying all of these opflons. please
contact the FastTrak Technical Support Line on 01923 495497 from Monday to
Friday between 9:00 am and 5.30 pm focal time. Or e-mail technic^ support at
w w w . d i v - a r e n a . c o m .

Important: no questions about the programming language will be answered by this
service. For intonnalion and tips on programming refer to this book, the built in tielp (Ft)
and the resource centre provided at www.dlv-arena.com.

Page 13

P r o b l e m s w i t h t h e m o u s e
If your mouse jumps on the screen instead of moving smoothiy. you are using an obsoiete
or incorrect kind of mouse (a mouse driver which is not updated). You can solve this
problem by doing one of the following:

• Contact your equipment supplier in order to get an updated mouse driver.

• Replace the program resolution with another one where this problem doesn't occur (item
1.3 of this book explains how to do this).

• (k/IS-DOS, only for advanced users). Comment the line of the autoexec.bat file where
you load the mouse driver. You can do this from DIV itself. Load this file (placed in the
root directory of your starting hard disk) with F4 and add the word REM at the beginning
of the line which loads the mouse driver (this line generally ends with ...mouse.com).
Then press F2 to save the file again, close it (by clicking on the upper left Icon of the text
window), exit DIV (ALT+X) and restart the system. If you had any problems with any
other program that needs this device, please edit the same file again and delete the word
REM you added.

Normally the audio system of DIV Games Studio is automatically configured and the user
doesn't need to introduce any parameters.

If you have a 16 Bit sound card and you cannot hear the sound effects of the sample games
when running them, you can try to configure your sound card by proceeding as follows:

First make sure the sound system is not activated; for that use option Open sound... from
the sound menu, and ioad a PCM archive (from the LIBRARY directory or from any of the
sample games). The sound effect will appear represented in a smali window Inside DIV. If
you click on it. you should be able to hear the effect. If you don't hear it, check the voiume
level, the speakers and the wires of your system.

In case of unsuccessful configuration:

• Press F4 to open a program and load the archive SETLIP.PRG which is in the DIV
directory SETUP\ (ciick on the directory .. (2 dots) to go up a level and then select this
directory).

• Once the program has been loaded, a new text window where it will be contained will
appear, Now press F10 to execute it. The sound setup will be displayed,

• Enter your card parameters and click on the button Save & Exit and you will get right
back to DIV environment. Then close the window with the program SETUP.PRG and try
the sound system again.

If even after doing that, you were not able to hear the sound effects of the program, the
reason could be that your sound card is not a 100% compatible with the Sound Blaster or
Gravis Ultrasound family, in that case, please contact your equipment supplier.

Page 14

13. Introduction to the graphic environment

B n s l c C o n c e p t s

This lirsl seclion briefly shows tho basic functioning of Iho windows environment as well as
many of the terms that will be used later on to describe more advanced functions. Wo
recommend you to read it even if you are an expert user of other types of environments.

Every lime you enter OIV Games Studio a dialog
box will appear. From then on. the program can be
c o n t r o l l e d w i t h t h e m o u s e .

About Box

M o u s e P o i n t e r s

The mouse can be Icimd on the screen thanks to a graphic called tho mouse pointer which
shows different lomis depending on the action to be done by clicking on the left button of
I h o m o u s e .

□
□

0
c c

c c

IP
c s

c u

C O

Normal Pointer: the mouse standard pointer, it's used to activate menu
options, buttons, boxes and so on.
Hand Pointer: rt tells us when we are passing over a special object,
generally over a movable object, which can be taken to aivither potion on
t h e s c r e e n .

Hourglass Pointer: It appears when the system is executing some kind of
internal process or calculation. It tells us that no action can be done with
the program until such a process or calculation Is finished.
Minus sign Pointer: it Indicates the possibilily of minimising a wirtdow, I.e.
of temporarily reducing its size In order to leave open space in the desk.
Cross Pointer: it allows us to close a window. Depending on the kind of
window the system may ask for confirmation before closing It.
Plus sign Pointer: it Indicates the possibility to maximise a window: this is
the iwposite action to minimise and allows to return a window which was
reduced to its original size.
Up Pointer: when the mouse is over certain controls, this pointer IrKlicales
the possibility 10 display or to access to the previous elements In a list. It
also indicates the possibility of brfnging a window to tlie front.
Dragging pointer: Ihis graphic will appear when an object is being
dragged; the pointer must be moved to the place of destination (to the
wallpaper, the dustbin, a map, a file, etc.) and then tho loft button of the
mouse must bo released in order to leave the object thoio.
Down Pointer: opposite to the up pointer, this one indicates when we are
passing over a control which allows us to display cr to gain access to the
following elements In a list.
Higttt Pointer: (I indicalcs that there is a control to move a display zone,
such as a text window, to the right.
Left Pointer: II will be displayed over the controls to move a display zone
t o t h e l e f t .

Diagonal Arrow Pointer: it indicates the existence of a button to change
t h e s i z e o f a w i n d o w .
Horizontal Arrow Pointer: this graphic Indicates the possibility of moving a
display window to the sides.

Page 15

Vertical Arrow Pointer: this graphic will appear over the vertical slide
bars, generally relating to a list of elements; when you click on these
controls, the elements in the list will slide.
Window Pointer: it appears on the controls that permit to enlarge a
window unto its maximum size. When the window has already been
enlarged to that size, this pointer shows the possibility of putting them back
to their former size.
Forbidden Pointer: this graphic indicates that the menu option is
deactivated, generally because it Interacts with a certain object which is not
loaded or selected in the program.

Click on the button "Accept" by placing the mouse pointer over it and by clicking with the left
button of the mouse. Any time a dialog box appears, the following keys can be used:

ESC - To cancel the dialogue.
TAB - To choose the selected control
Enter - To activate the control that has treen selected.

The controls that can be selected in a dialog twx are the buttons and the text boxes.

M o v i n g w i n d o w s
The dialog boxes, like the rest of the windows, can be moved to any position on the screen
by clicking on the title bar and dragging it to the new position.

Title bar. It Is the upper side of the windows and shows the name of the window in white
against a blue background.

Dragging. This term is used in the graphics environment when we click on an object with
the left side of the mouse, we move it to a new position and then we release the mouse
b u t t o n .

When a new window is created, the system will place it in the part of the screen where it is
considered that it hides the least information. The dialog txjxes are an exception: they
always appear in the middle of the screen because they require direct attention from the

If we would like the system to place a window automatically, we need to click twice on
the title bar of the window, if the system finds a better position for the window, it will move it
t h e r e .

T v o e s o f w i n d o w s

Windows can be classified according to different criteria: depending on their state, they
can be grouped in:

Foreground: they show the title bar and information and they are highlighted (those
windows which are not covered totally or partially by others). These are the only
windows on which actions can be performed. They can also be divided in two
g r o u p s :

Page 16

Active windows: unless the colour conliguraiion has been changed, they have
ihe title bar highlighted with white letters aganst a blue background.
Inactive windows: Their lille bar is in black letters on a dark gray background.
To activate one of these windows, all you need is to click on them.

Background same as the foreground winctows. except that these ones are darkened
because they are at least partially covered l>y other windows. To interact with these
windows it's necessary to bring them to the foreground by clicking on them. These
background windows can also be active or Inactive depending on the colour of lis
title bar (which is now darkened).

Icons: icons are windows that have been minimised, i.e. reduced temporarily. They do
not display any drawing, only a plus sign and the window title. They will nol be
darkened when they go to a background.

Windows can also be classified according to its function:

Dialog boxes they appear in the middle of the scieen. They cannot be minimised (i.e.
they cannot turn into an icon). They put the rest o1 the windows in a background (even
if they are not covered). There are three kinds ol dialog boxes.

Information windows: boxes like the one you Imd when you enter DIV Games
Studio, with only one button, accept, used to continue the execution once Iho
message has been read

Interactive Dialogues, used to ask the user tor information. There is a groat
variety of them and they will be seen in their respective options. They usually
have at least two buttons, one to accept and the other to cancel.

Error Boxes same as the information windows, except that me tit le bar Is
displayed m white against red They mlorm about any problem that has
o c c u r r e d

Convent ionel windows: they onfy feave in the background those windows Ihey
cover. They can be minimised at any time and they can be displayed anywhere on ihe
screen. The mam types of windows are shown below (the rest will be seen later):

Op t i o n s m e n u s : a l i s t o l o p t i o n s
that take to other menus, windows or
dialogues when clicking on them. All
m e n u s s t a r t f r o m t h e m a m m e n u .
Some menus have sorre options
deactivated (in this case a forbidden
pointer appears when the mouse is
over them) because they interact with
a specilic type ot window and no
window of this kino is active (it will be
necessary to create one or to load it).
Chapter 2 shows all tods mat can be
accessed through me options menus.

j E D I T M e n u c r r f

R e p l a c e . . . ; _ M U Tr - J U i
Opihyts Menus

Page 17

f o S T r n m s r
l i i — : f . C

u T C T U r m r i A T C A
' / M J T H M I : M i t e l I W W t I O '
/ / M I B l \ Z / 9 b / T ?

n ^ r . f A i f e t t i A t e r ;

(« * S T
/ / « u v « f

T
- f

: C ! 2 « i 7 , ' I
. M n e h T Q) ■
r i u r n i n f ■
^ n r « M l > j c k s l 9 ; S

t e o c M d r U). 4 M 4 » I 9 j [:
f / c M r « c X « n ' r a t i t i e n *

Ĉ
C I r n s ^ s ^ ^ s m ^ ' ^

Programs we create the programs in
t h e s e w i n d o w s . T h e y a r e t e x t e d i t o r
windows. In order to edit a program Its'
window must be activated (only one of the
programs loaded can be activated). The
text editor is very similar to other text
editors. Appendix 0 offers a summary of
the editing commands that are available.
T h e s e w i n d o w s a r e c o n t r o l l e d f r o m t h e

programs menu and the edit menu. To
gel help about a word of the language
in a program the blinking cursor (not the
mouse pointer) must be placed over that
word and then press F1. The size of these
windows can be changed by clicking on
their lower right button and dragging
t h e m w i t h t h e m o u s e . A Program tVintfow

Maps or g raph lcs t these w indows
contain a map (bitmap) or a graphic
(a drawing used m a game). They are
controlled through the Map menu.
They can be loaded f rom a MAP
archive (own format) , or imported
from a PCX or BMP archive, or they
c a n b e s a v e d i n a n y o l (h o s e
formats. To edit graphics, we must
d o u b l e e l i c i t o n t h e s e W i n d o w s w i t h
the mouse lelt button, thus entering
in the graphic editor (described In
chapter 3). These graphics can be A Map or Graphic

dragged to the wallpaper (to make a copy), to another graphic (to insert them),
to a tile of graphics (to Include them) or to Iho dustbin (to delete thorn), Ivlaps
can have any kind ol size, the only limit is the available memory:

e? l He i i cop te ro 2
e?2 Kel looptero 3
079 ffe i looptero 4
07<1 Heilcopt«ro 5
e7S Heiipoptero 6
076 Heficoptero 7
077 Heltcoptero 8

F l i es o f g raph tcs : t hese w indows
always correspond to a PPG file in
t h e d i s k . T h e y a r e l i b r a r i e s o r
g r a p h i c s c o l l e c t i o n s u s e d i n t h e
games. They are useful becauso that
way you don't have to load a great
h u m t t e r o l m a p s s e p a r a t e l y I n a
game. They have two basic modes of
f u n c t i o n i n g w h i c h a r e a c t i v a t e d
through boxes in their lower part. The
first mode Is Tag/Drag and Is used
either to tag and untag a scrios of graphics on which we woukf like an operation
to be done or to drag graphics out of the life (to the wallpaper, to other files,
maps or to the dustbin). The second mode is Info, and is the mode where you
can edit the codes of the graphics and their descriptions or simply display its
contents. The graphics files are controlled through the Files Menu,

A Graphics Fi le

Page 18

C R E 0 I I 5 . F H T F T

Nun Cap Sni s>jnExt

Fonts: the fonts or types of letters are small windows
that represent a certairr style ol writing. If you click on
them you will be able to see a sample of the font.
They correspond to FNT (own formal) and are
controlled through the font menu from which the fonts generator can be
a c c e s s e d . T h i s i s t h e t o o l u s e d t o c r e a t e n e w t e t t e r f o n t s . T h e f o n t s a r e u s e d t o
write text in the drawing programs and in the games.

Sound effects they appear on the screen as PCM's
(pu/se code modulaiion) in small windows. They are
controlled through the Sounds Menu and they can be
imported from WAV archives. In the DIV directory you
wiil a library with almost ttXX) sound effects all ready
lor use in the games. To near a sound effect you
need a 16 Bit sound card which is correctly configured
and then you need to click oti one ot Ihese windows. A Sound Effect

Help windows they are controlled
mainly by the mouse but you can
also use the cursors , the page
down and page up keys and
B a c k s p a c e t o r e t u r n t o t h e
previous page (Ihrs key rs the one
w e u s e t o d e l e t e a n d i s s i t u a t e d

nghl above the Enter or Return
key) The help wrndows show the
t e x t I h t h r e e c o l o u r s ; I h o m a m t e x t

A Help Windot r

in black, the highlighiod toxt (in bold type) in light gray and the texts which refer
to other help pages in while. To access those pages you mirst click on the
references. The help windows ^so strow examples which can be accessed by
clicking on them and executed by pressing FIO or aborted by pressing ALT-t-X.

(') the dustbin window must be activated first from the menu system using the relevant
option.

W i n d o w s B a s i c C o n t r o l s
T h e m a i n c o n t r o l s u s e d i n t h e w i n d o w s a r e :

Minimise Button. First button in the (rile bar ot the conventional windows. The dialog
boxes don't have this button. II is used to minimise the windows, i.e. to luin them into

an Icon. Windows are minimised when free space is needed on the desktop window. An
alternative is to close those windows without losing the information they conlaln.

a Maximise Button. Only proseni in the icons. It is used to maximise the windows,restoring it to its oomplete Size from the icon. The windows wiil go back to its original
position unless they cover another window there arxl tree space is available somewhere
else on the desktop. Icons can be moved to anywhere on the screen by clicking on Its name
and then dragging. A double dick on the icon name will make the system find the best
possible position lor the icon in the desk.

Page 19

Close button. Used to close ine mndows. I.e. to eliminate them. It is piesent in alt
windows and dialog boxes but not in the icons since these ones must be manmiscd

to be closed. In the windows which contain intormation that can be lost, contirmalion will bo
asked belore closing them. For the rest ol the windows, such as menus, this contirmalion
will not be asked, since they can be created again any time.

q] Enlarge Button It Is displayed in the program winoows and used to adjust the size ol■■J the window to its maximum. To put an enlarged window to its originat size you have to
click on this same button This action can also be performed by pressing Control.fZ. in
which case, il there were several windows ot the program, the one among them which is
QctivQ will bo enlarged (or minimised if already enlarged). To activate a window, all you need
is to c l ick on i t wi lh the mouse.

□ Rcscaling Button. This plain button is displayed in the program and help windows. ItIs used to change the size of a window manually. Click on it with the left side of the
button and, without releasing It. move the mouse until the window has the size you wish.
The help windows can only be rescaled vertically (to add or to suppress lines but noi
columns). Tho program windows will never be over the limit of 80 columns per 50 linos.

I«l ll»l Slide bar. This bar is always associated to a display window, such as a list
of elements, and indicates the possibility of movmg or sliding the contents

o l t h a t w i n d o w. I n b o t h o f i t s e n d s t h e r e a r e t w o d i r e c t i o n b u t t o n s u s e d t o s l i d e t h e l i s t o l
elements little by little. A movable rectangular indicator placed Petween t>oih buttons shows
the part ot the list being displayed. By clicking on me bar me list will gulckly slide until it gets
to the chosen position.

Text Button. This button Is displayed In the dialogue boxes and its function
depends on the text written on the button. The most common ones are the

buttons Accept, to validate the action of the dia'og box and Cancel, to cancel the action.
Very otien this button will be the same as me button for closing me box described above
and displayed in the upper right comer, if you wish to see me tunction of a specific text
button, you must access the explanation of Its dialog box. Ikfost ot them are Oesonbed m
chapter 2 of this book. Any text button can be selected by pressing once or twice on TAB.
and can be activated with Enter (me button will t>e shown with a dark edge when seiecied).

Switch. The switches are options of the program which can be activated or
deactivated. The text at the side of the switch refers to the option or feature of

tho program whose stale can be established. Such features will be activated when inside
the switch there Is a black point. To aciivale or deactivate these options all you need is to
click on the switch or on the text, it is not possible to modify a switch through the keyboard
c o m m a n d s .

I. .i.iL.'n'^ Text box. Used to ask for any kind of numeric or aiphabolicai information, but
thoy can also be selected by using TAB. Once (hey are soioctod. a dark sdgo
will be shown In the box and you will be able to start wiiiiiig directly or

olliorwise press Enter to go to edit mode. Once the text has been edited, tho koy Enter will
validato the now toxt and the key ESC will cancel me edition making the text box recover Its
previous conteni. A box can t>o edited by clicking on it; the first click will activate the box
keeping the previous text, the second click will delete it.

Page 20

T h o M e n u S y s l e m

The Menu System is a group of wjndows wilh options that derive from the window called
Main Menu. Once it has been activated, a menu will remain on the screen until it is closed
or minimised. Any menu can be created again from the main menu when we need it.

l i fi i M r r
P r o g r a m
P a l e t t e
t i a p
F i l e
F o n t
s o u n d
S y s t e m
H e l p [F i l l

When you refer to an oplion, you must indicate the name of the menu
and then that of the option with an inverted bar between them. For
instance, the option Programs \ New., relers to the first option of the
menu of programs, used to create a new program

Some menu options can be reacned through shortcuts, i.e.
combinations of keys that permit to do the action directly, even if you
have not opened Iho menu. In these cases, the key combination is
always shown In the menu itself, next to the text of the option.

To exit the environment, press ALT^-X and a confirmation box will
appear. To exit quickly without having to confirm, press ESCi-Control.

Tne Klan Menu Windows users must be careful with the Order in which they use this
combination: first, they have to press ESC and. vwlhout releasing it.

then piess Control, if they use this combination the other way around (i.e. Control«ESC), it
wit! take them to the start menu of the Windows system.

The contents of DIV Games Studio's desktop will be restored in the next execution of the
program exactly as you ieft it when you exiled, and therefore informallon wilt never be
lost wtien you exit the environment.

Here IS a summary of the functions of the most imporfant menus you can access from the
main menu. Chapter 2 gives a detailed description of the functions of these menus.

Programs. This menu allows lo load programs, to execute them, to debug them or to create
new programs. Programs are shown in the edit windows From this menu we access the
Edit menu, where the basic commands of text editing are shown (cut, paste, searching,
replacements, etc).

Palettes The colour palette is the whole 256 colours used by Ihe game. From thrs menu
you can load palettes (from multiple archive formats), record, edit (lo create new palettes),
give ihem an order, fuse them. etc. All graphics used simultaneously in a game (in the same
screen or phase) must have been created with the same colour palotie. When there is a
graphic in the desktop window and you would like to load another one with a differeni
palette, the system will make you adapt one of Ihem lo the palette of Iho other one. Chapter
a gives a detailed explanation about the use ol palettes.

Maps Maps or graphics/sprites are the backbone ol me games. This menu allows to work
with archives MAP, PCX or BMP. 10 Create both the graphics/sprites ol the characters and
the .scenery ol the games. Graphics of ihose files can pe loudsd, recorded, edited, copied
and so on. To edit them you can use tnc option Edit map or double click with the mouse.
From this menu you can also access the Explosion Generator.

Files, The FPG liles are files that contain libraries or complete collections of graphics. They
are used in the games to load many graphics in one go. In order to put graphics into a file,
the map windows have to be dragged onto the File window. This menu gives access to the
basic options of the Files.

Page 21

Fonts. The letter fonts refer to the FNT archives which contain game fonts, ready to be
used in the games. This menu allows you to perform the basic options with these archives,
among them, to access the font generator which is used to create new fonts. The last
options of this menu allows you to export fonts to graphic maps to retouch them manually in
the graphic editor and Ihom to import them back again into a font archive.

Sountfs This menu allows you to load sound effects from PCM archives and to hear thorn
so that you can identify tho suitable sound effects for a specific game among fhe ones in the
DIV Games Studio sound library. These effects can also be imported from WAV archives,
w h i c h I S t h e w i n d o w s s t a n d a r d f o r m a t .

Sysfam. The system menu gives access to the generic tools of the environment and to the
configuraiioh options. From this menu the colours, fonts and video mode used in the
environment can be defined. The conliguration opiions are described next.

1.3 Confffluratlon of the environment

S e t t i n g a v t d e o m o d e
The option System \ Vtdeomode... gives access to a dialog box that allows us to modify the
resolution used by the DIV Games Studio's graphic environment.

S e t v i d e o r n o d e . . . r

(l o r t p " T : : - : * 3 2 9 x 2 8 9 r

Csnati font' 3 2 9 x 2 4 8 m
329x489 ■

o e i g f o n t 3 6 9 X 2 4 9 r

[f K c e p t V iciitu,:
Videomodo Select ion Box

T h e v i d e o r e s o l u t i o n i s i n d i c a t e d a s t h e n u m b e r o f

pixels (horizontally and vertically measured) existing
on screen in that mode. They vary between 320x200
(low resolution) and 1024x768 (highest resolution). It
is necessary to click on the list appeanng in the box
and then, on the button Accept in order to select a
n e w r e s o l u t i o n .

imponant. Some of these videomodes can mcorrectiy be displayed in some computers, in
these cases, the first thing to do is lo exit the environment by pressing fhe ESC+Con(rol
combination and then, re-enter DIV In the fail-safe mode. For that, the following command
must be executed trom the commands line ol MSOOS and in the directory (folder) in which
the program has been installed :

O . E X E / S A F E

Thus, the environment will be entered In low resolution (in 320x200. fhe most compatible
mode). To position in the program's directory from the commands line, the following
staiemeni must be executed (supposing that fhe program has been installed in unit C. in the
directory DIV):

C :

C D \ O I V

In those computers in which tho videomode is not compatible with the standard VESA, a
vesa driver must bo used. For lhat purpose, you must contact the supplier or the after-sales
service of your hardware equipment (a driver is a shon program that must be installed In
the computer to give support to some devices such as. in ihis case, the monitor).

Page 22

Due to problems ot incompatibilily ol the mouse driver, il Is possible lhal in some
eompulers. Ihe mouse pointer jumps. Inibese cases. i1 is necessary to update Wat driver or
use anoitier videomoOe tor tfie environment, otherwise it won't t>e possible to correctly work
in the graphic editor.

Two switches allow us to select the font used by Ihe system:

Small font. In this mode, all the windows, menus and boxes will be seen In a smaller
Size, being appropriate for low resolution .

Big font. This mode can only be activated In SVGA resolutions (Irom 640x480)
and It is Ihe appropnale for these icsolutions In t4 inch monitors.

The torn used In programs and help wndows is delined in the conliguration window later
d e s c r i b e d .

C o n l l Q u r l n o t h e w a l l p a p e r
To establish the desktop's wallpaper, it is necessary to access the option System \
Background..,, which will Invoke the following dialog box:

First, the button '...' indicating 'Source' must be
clicked to select an archive MAP with the graphic
aimed to be used as background. 11 the aim is to use
an archive PCX or BMP as a background, il must t>e
first loaded with Ihe option Maps \ Open map... and
then, saved (Maps V Save as,,.) indicating an archive
n a m e w i t h t h e e x t e n s i o n . M A P.

The appearance of this graphic will be indicated
through the following switches:

Mosaic. II this switch is actlvaied. the game will be
displayed In its original size, not re-scaled, and II it Is
smaller lhan ihe screen, the picture will be repealed
until the screen background Is filled with it. When it is disabled. Ihe picture will be re-scaled
(expanded or reduced) to 111 the screen size.

Colour / Monochrome. Out ol these two switches, only one can be activated. The first one
indicalos that the picture will be taken in colour, adapting to the colour palette active in the
environment (it normally implies a loss ol quality lor the picture). If the second switch Is
activated, the picture will be adapted to a colour range ol the palette, which vjjii be defined
with three components: Red, Green and Blue

Those components, ranging Irom 0 to 9. will bo modified wiih the buttons '•' and'+'. They will
only bo applied when the switch indicating Monochrome is activated, and they define the
lighter colour ol the range. Some examples ol combinations of these values and the
lesulling colour are now shown:

• Red=9. Gieen=g and Blue=9 will define Ihe white colour as the lightest one in the range
(the wallpaper will be shown in black and while).

• RedsO. Green=0 and Blue=9 will define the pure blue The wallpaper will be shown in
d i t i o r e n t b l u e s h a d e s .

IVat'paper cortfigurarion

• Red^4, Green=0 and Blue^ wil) define ifie dark red colour as the lighter one of the
range. Thai is to say. the wallpaper will be seen in dark red shades.

• Re0=9. Gieen=9 and Blue=0 wril define the colour yellow (red»green). Than, the
background will be seen as a colours range defined between the black and yellow
c o l o u r s .

The resulting ranges must be adapted to the colours available in the palette, some of these
ranges look better than the rest. Consequently, before finding a colour range compatible
wilh the palette, several tests must mrmally be carried out.

The changes made in the wallpaper won't be visible until the dialog is finished by clicking on
the button Accept

T h e c o n fl d u r a l l o n s y s t e m

Through the option System \ Conllguration.... a
dialog box will be accessed. From it. many aspects
of tho graphic environment can be defirted.

This dialog is split into several sections, shown
next. These options won't take effect until the dialog
fi n i s h e s .

W i n d o w c o l o u r s . T h i s fi r s t s e c t i o n e s t a b l i s h e s t h e
colours used by me environment. The background,
ink and bar colours may be changed. In order fo
change one of fhese colours, it is necessary to dick
on the box wilh the colour, and a dialog box will
appear that will show all the colours available in the
active paloile. The curientiy selected colour will tK
s h o w n i n s i d e i h i s b o x w i i n a m a r k . T o s e l e c t
another colour, it is necessary to dick on it first,
and on ihe button Accept later. The system doesn't
only use Ihose three colours tHjt. from them, it
generates other mtermedrate colours lor texts,
c u r s o r s , b u t t o n s , e t c .

Program editor. The appearance of the programs edit window is established irt this section.
The three basic colours (windows background, characters ink and cursor colours), as well
as the edit font (the letter type's size) can be selected from 6x8 pixels to 9xt6 pixels. All the
edit fonts are fixed spacing. To select another fixit. the buttons ot the scrolling bar must be
used. The text blocks tagged inside Ihe editor will be seen with ihe ink and background
colours exchanged.

Painting program. In Ihis section, it is possible to define Ihe quantity of memory reserved to
undo options In Ihe graphic editor and the mouse pointer used In the edit. The amount of
memory Is spocitiad in Kbytes; by default, if equals 1088Kb (a little bit more than one lifB).
II is not necessary to modity this value, unless a task can not be performed in the graphic
editor because there is not enough undo memory (in that case. Ihe program will report it).
The bigger the undo memory's reserved space is. the smaller the memory space available
In the system vail be tor the rest ol tasks. It is possible to select among three dilfererit
pointer sets by clicking on the pointer graphic shown in Ihis box.

C o r r fi ^ i t M i t . . J
f t i a o u c o i o r s i —

. f Mi I jgw
e o i i o r ^

i j M i l M i B t u K O roitonnfotf :■$«««< MKMervK
i e P t s d H i i w. B fi u n i i f r s a r m t *

_ I
fir flgront-jr—«riin) »xii]

C f s b f k u T t O M ' ' "
□ E x M O w g U M S U t
□ n o v o u i - ' k o o u
a n u v o s * v « m s w
nShCJ pr:9r-jr>i$ <1 r.uuow i»» '■*

&o» To Cooftgufs The Eovimnmonr

Page 24

Global options. Three switches appear In the last section When they are activated, they
will define the following charactenslics:

Exploding windows Indicates that all ihe windows' offsets must be displayed on
opening, closing, minimising, etc II this option is disabled, the environment will lose
eltectiveness. but It will answer moie quickly.

Move complete windows. Indicates that, on dragging the windows to a new position,
the final result must be seen all the time. The windows thai arc progressively
uncovered will pass to the loreground and those Hint are hidden will pass to the
background. It may bo advisable to disable this option in slower computers.

Save session always, indicates that, on exiting OIV Games Studio, the state of the
desktop and all its objects (programs, maps, sounds, etc.) must be saved. If this
option IS disabled, the user will enter and exit the environment more quickly. However,
the user risks losing works thai have not been saved on exiling the environment.

II the conliguration window is closed or Ihe ESC key is pressed, all the changes made In il
will be lost, restoring the values ol the previous eonfiguration.

1.4 Execution of the sample games

G e n e r a l i n s t r u c t i o n s
This section will explain how to execute Ihe sample games of DIV Games Studio and will
also give you the instructions lor all of thorn.

All these games are simple examples and theretore even though they are complete games
most ol them are very easy or very short. The reason for this is that we have tned to show
the techniques they use and Ihe way the programs are made and not to give endless lists
where the user would get lost. Nevertheless we have put a lot of enthusiasm into these
games and we hope you find them enjoyable |we like them very much...).

To execute any of the examples, first you have to load the program by using the option
Programs \ Open program.... which will make a window appear containing the list of the
program loaded.

We encourage the user to examine the programs and to try to make changes in ihem. .. this
is one of the best ways to iearn. When you are over any reserved word, conslaril,
variable, function, etc. ol Iho language, you can press F1 to see a help page about that
item. II the help about the item doesn't appear (and what appears is the gonoral index), it
means that the item is not a name typical of the OIV language but a constant, variable or
exclusive process ol the game (processes are like functions which direct the performance of
the graphs or of the 'spnies', m the games).

We recommend td start with a simple game, like STEROID.PRG {Steroid, a version of Ihe
famous Asteroids) which although it is not lochrlcally very advanced or graphically very
spectacular, it's one ol the easiest ones to understand. Later on we can go to more complex
ones such as MALVAOO.PRG {The castle ol Dr. Malvado. plallorms) or FOSTIATO.PRG
{Foslialor. a lighting arcade game in the traditional style). These will teach you many mere
things

Page 25

Texis starting with the symbol // (cJouWe bar) are explanation comments, they are not part ot
the program but clarilying notes about the running ol the program. These comments are
usually vital to be able to understand how the programs work since they can be placed
anywhere in the program.

In order to go to one ol the program processes (one ol the blocks containing programs to
control a graph or a spnie ol the game) you have to press FS and select the name of that
process by using the mouse.

To execute one ol the loaded games, you have to click on its window with the mouse and
them press F10 (you can also do this using the opbon Programs \ Execute.

Instructions tor these games vary from one to another, but most ol them allow to exit by
pressing ESC and are mainly run with the cursors keys and with Control.

The Pause key can be used in all the games to stop its running momentarily.

All programs can be aborted at any point just by pressing the key combination ALT-t-X

The most curious ol minds can go into the games
by pressing F12 (from the game ilsell. when this is
being executed) This key allo'ws to access the
program debugger, which is a tool designed to
oxocule the games step by step. This way you can
watch all processes and modily its variables (If you
find the appropriate variable, you can change all
ihe game parameters , the phase number, the
lives, .). Of course ai this point we don't guarantee
the results you get

Program DeOugger

t v t j - c x r u u o A b * C K j « r r

Let's play!...

Page 26

EXAMPLE GAMES
STEROID vl.O

Tne galactic spaceship Caesar-Jjiius
(the blue triangle) has got lost in a
l i e i b t u l l o t i m m e n s e f u s i o n a s t e r o i d s

(the dravinngs ot yellow lines) and it
must make its way through them by
d e s t r o y i n g t h e m w i t h I t s n e o -
electrons laser-phaser. There have
b e e n m o r e v e r s i o n s o t t h i s t r a d i t i o n a l

g a m e t h a n w h a t a n y o n e c a n
r e m e m b e r .

To start the game you have to press any key and to exit it the
key ESC. You have three lives to try and reach the highest
possible level (it's really dillicult to go fudher than the fourth
level and even to get to this one).

It is controlled by the following keys:

Right: Clockwise rotation,
Left: Counter-clockwise rolallcn,
Up: Accelerating (to brake you have to accelerate In the other sense and this is more dillicult
than it should be).
Space: Neo-elecirons laser-phaser shot.
H: Hyperspace (it takes the spaceship to another position In the screen when coUisKin with
an asteroid is imminent).

THE CASTLE OF DOCTOR MALVADO

The hero of this colourful plalform adventure
is Jack, a chubtty boy who lor some reason
is very mad at the wicked Doctor Malvado.
Jack has to get to him trough multiple
obstacles and through beautiful landscapes
lo guench his thirst for revenge.

The game is divided into three pans. First.
Jack has to go through the woods and get
inside the castle to battle the son ol the Doctor, who. by
the way, is even latter than him. Then, he has to climb
one of the castle towers avoiding spiders, haunted
pumpkins and other hair-raising objects. And, finally
Jack has to light Malvado and find the devious way lo
beat him. either by playing a lot or by studying the list
of the program to see what he does.

Page 27

Jack has only two extra lives to gel to the end and since they are not at all enough, he has
the opportunity of picking up new lives along the way by collecting ten coins from the many
w h i c h a r e a v a i l a b l e .

II you are fond of platform games, you will find this one a tun and especially difficult
challenge and it you don't like them wo are sure this game will gel on your nerves,

You can play with the joystick or using iho loilowing keys:

Loft and right: to move Jack to both sides.
Space or Control: Jump.
ESC. Abort the game or exit it.

The hero may go up many objects in the map. lor example, the mushrooms: all 1*6 needs is
patience and ability. Enemies can only be killed by jumping on them, same thing for Doctor
Maivado's son. But how do you kill Doctor Malvado himself ?

F O S T I A T O R

This is the ultimate combat belwoen tho best bionic person and super human warriors. It is
a very simple - a typical fighling game but it is great fun and has ampio 'gore' (vory
generous when blood Is concerned). It consists of three round lights Cietween two of the
loilowing warriors:

A l i e n : A 6 1 2 B C A l i e n w a r r i o r w h o i s n o w
somewhat rusty. He returns to live in 1992 to be
ih the Olympic Games in Barcelona but Ihey
wouldn't allow him to participate and now he is
in a very bad mood. His strength is medium-
low. Out he is very skilled in the use of a ctaw.
Something like good Old Freddy which would
raise even Casper's uncles' hair.

Bishop he is the good guy: a bionic warrior with high tech
parts. More handsome than Barbie's Ken. he participates in
the fights only to get a hard man lace. His strength is
medium-high and his main weapon ttie anvil in his hand,
ready to make the rest of the fighters' faces look hard.

Ripley the only grri in the game. Her Inleliigence is much
higher than thai of the other tightois. She used to be the best gymnast in the planet, though
she also was a waitress (tor two months), taught liille kids, programmed videogames, elc.
She is the least strong one but she is very hard to beat because she uses the sharp Ra
baton - excellently.

Nostromo. one ot the Immortals who has not loughi Christc^ner Lambert yet. He is
certainly immortal but he can be knocked out like the rest. He is rude and he bases all his
strategy in the blows with his double-edged battle axe. He is the strongest one and this
gives him a good chance against the others.

Page 2B

The game features have to be set in the option selection screen by using the cursors to
select the options and pressing Enter to activate them. Up to bottom, the following options
can be set :

Control of players. You can select who controls the first player and who controls the
second. This way you can select a demo (computer against the computer), a player against
the computer or a game for two players.

Level of difficulty. Three levels of games can be established. Even in the most difficult one
it is possible to beat all the fighters, of course.

Blood Level. You can omit blood (but the game loses much of its attractiveness) or set the
blood level to: normal (which is already a lot of blood) or excessive (you can work it out).

First and second fighter. Any of the four fighters can be selected as the first or second
player. You can choose the same one for the first and second player; in this case you will
see the first one coloured and the second one in black and white.

Game scenery. You can choose between three scenarios for the battle: the castle, the cave
or the desert (this makes the fights more attractive).

The game keys are shown in the control option of the players (the first one). By using these
keys you can advance, go back, jump or gel down; you also have a blow key which
depending on the action will give one blow or another.

Blow while stopped. Punch (or traditional blow).
Advance and kick. Short and quick kick.
Go back and kick. Super rotating kick.
Jump and kick. Kick in the air.
Crouching punch. A punch while crunched (a low blow).

Other blows can be performed...but first you'll have to program them.

Game strategy
This game is not only about hitting. You have to keep in mind that any time you use the
same kick or punch it loses effectiveness, either the other fighter gets it or not. Defense is
as important as attacking and thus all blows have to be used to get the best out of each
lighter ahd also the same blow or kick mustn't be repeated many times (otherwise it won't
do anything to the opponent in the end). Then the best thing Is to try to hit the opponent
every time we use a blow or else our fighter would get tired for nothing and will be
v u l n e r a b l e .

The easy mode is probably quite easy, but to win in the difficult mode is a much more
interesting challenge and so are the two player games.

G A L A X

T h e U S P r e s i d e n l , d e c o r a t e d w i t h a
Medal of honour wtien he was young, has
10 delertd the Earth trorr the ouierspace
invaders . He i s on Board a s ta le o f the a r t

fighter. This is a version of the typical
space invaders game in which a single
a i r c r a f t b a t t l e s h u n d r e d s o f e n e m i e s .

You can press any key to start the game and ESC to exit
10 abort a game. You have three lives to finish with as many
enemies as possible and this Is increasingly difficult. The
lighter-plane can be controlled with the lollowing keys:

Left and Right: Move the aircraft lateralty.
Space: Laser shot.

To increase game difficulty: you cannot shoot again until the previous shot has collided with
an enemy or it gels out of the screen. During the game, the maximum score you have got
will be shown. Wo have not been able to go over the fifth level.

SPEED FOR DUMMIES

Probably It IS not a very realislic simulation, but under its childish appearance the four
ferocious racing cars hide High Horse Power engines.

II Is a hard race where second gets homing (acfuaily
the winner doesn't get much eillier). In the first screen,
you can select, with the cursors and Enter, to start a
game with one or two players (the screen divides into
two), to set the race options and to exit the game.

The race options which can be defined are the
following

Difficulty Level. You can choose between mree levels.
Race scenery. You can choose between a forest or a desert.
Number of laps. It can be 3, 6 or 9 laps to the circuit.

Once in the race, the keys for both players are:

Player 1 - the keys ol the cursors.
Player 2 • R. T to turn and Q. A to speed up.

To abort a game you can use the key ESC. The games with two players will nol linish unll!
b o i h c a r s h a v e c r o s s e d t h e fi n i s h l i n e .

Page 30

le s6Bd

^ mp- ■ ; /il- a

1! |riO(^ iqrrap ou 'uOiSSjOj

;|n3!mp V 'AuiJe ieuO!$$9|OJd e oi 6ui6uO|3g
sijun |o jegiunu leejS e bsei noA (|||>| 8m leqi

luoj) eidoad si i| asss S!M1 ui) j9|||)| sjspeaui
•saeds leaipsA e sii siueB smi saoj oi BuioS eie
noA 'uieei-v sm |0 0)A|s agi u! uoios a>i| noA n

'.dig auiii pooS a pue 'japuEuiuiod
'dpi Sufiunp pooB B PABH '(dois) uods
joj A|SAisn|oi<9 'uoissiuj Sujuieji e si sipi '(dois)

■ ■ I MPea sgi (0 siuBiigBpu!-diq -AAai b Aojisop
01 • '{sooiiEsiiiAp ueuing jo lueBmaiiJ! jegio ssejddns oi loqoj ueijD us 'jauiudng uohv) 'S'v
asn 'daaq—isnuj ooA. luoissjuj siyi ui S|806 jnoA pjb esapi nusdAipnBAz)! japueiiiuioo

usniudns Nsnv

'(SjB
A>|3n| A«oit) ABjd 01 pajinboj lou sj aauaBmsiui sngi puE jeASOsiegM ASaiEJis Aub ŝoei qion

'uaajos am u| iiiis oje Aagt saujg to spajpung luagi Bugiip jaiie lEgi eas
noA If UMop luagi hb uiegl Bupcai uo isfsuf lOu isnui noA os 'ueMOjq aq ubd siiopq eg; ||6 ion

'laB noA Aiforij Atog uo Bujpuadap paq
JO pocB aq uep sajnsdBO ogi Aeid noA se lujea; aq isnijj isajia asogiw sajnsdep jO saues
E pue s)|0|jq 10 spufij luejauip osje 'UMop jeai uep noA siibm jo jaqiunu leajB e aje ajagj.

auiEB agi irxa jo auieB e gsiuy iqsb
laJjOEJ jasei agi laB noA uagw loogs pue ijeq agi aseajaj oi :aoBds

(asjnoo |o
'p iig ueo noA |i) apunoq i|im iieq agi ajagm ia>(oej ouaujaqAp agi aAoui oi ggBiy puB uaq

;sAai(Bufjwoiioj aui giw snopq eiuos uwop goouii oi sseid oi si paau noA jje BuiAeid peis oi

•pBis POA oouo
sauieSoapiA BufujiuejBoJd gsiuij oi paau noA ueui aouaiiad ojouj ubao pub upjs A|uo 'uosuaj
e paau i.usaop euieB sigi ing if uo papuedap AxajeB o osneaaq uuop pajjoouii aq oi
peg iiB/iA agt :auiB6 agi oi asuas ppe oi eapi ofisBiuei egi giiw dn aujEo Addega ueius au/os

•fiuojM SB« ag irq 'pidnis jo pufii s8"a ii i8gi igBnogi AiqeqojO an 'Jbi sigi o6 piooo
eapi sig iBgi igEnogi joAau hem b Buoieajq seoB goigM iisq c g|iM eujeB e)0 eapi eui peg
jaAaogM iBgi auiBeuu | 'Suoisjoa Aubuj peg seg isgi oujeB e to uogeidepE jagiouB S| sigi

OION

•jBLujou SI sigi inq 'gjiii igBu ajBufs B aijBui i.uop noA auieB
ISJji agi UI AjqBqojd '0|qissod se isej se ujni gpea aifEi oi ajqe aiE noA legi os Sjinojfo egi
Buiuieai ui sf aiuEB agi |o unj agi auiii ajogM ag] JOiBjaiapoB ogi Buissaid ajB noA jj jauufAi
agi aq jaAau him noA sngi 'do|s pue aounoq i|iw ii iinojio agi jo ino laB oi saui jbp b uag/y

Both i(ie oplions and the game are controlled with the cursors and the Control key,
Several ambushes have to be overcome, each one harder than the one before, until you gel
to the final enemy, a super giant you will try to beat.
To win in this game, you have to advance slowly and cautiously. It you go too fast, the
enemy's ambushes will accumulate and they will make roast chicken out o1 the poor
commander who will leave t3 lonely alien widows

You have five land to land missiles to complete the mission tlhey are useless against
helicopters). You can shoot the missiles dunng the game by pressing ALT If you really want
to make it all ihe way to the end you better keep the missiles for the tinal enemy. The laser
shots are endless, so the worst thing that carx txappen if you use them too much Is that you
may have to buy another Control key.

PUZZLE -O' MATIC

Solving 35 piece puzsles may be easy even lor Nostromo. But if you don't have much time
to do it. they can be a challenge even lor a videogames programmer.

This game, that gets you addicted like many others, challenges you to solve five puzzles
each in a shorter time than the previous one. In the oplions menu can be used the loliowing
keys;

Ft: To start a game.
ESC: Exit the game.

Once you have staned the first game, you'll have 250 seconds to solve the first puzzle: Ihis
can seem like a long time lor 35 pieces but I bet you won't be able to do it the first time. To
move the pieces, you have to drag them with the left button of ttte mouse and turn tiiem
with the right button.

When a piece is placed in the nght ohenialion and right next to the right position. Ihe
program will take it down to its place. Then you have to worry about the pieces which
haven't been placed yet

Of course Ihe pieces will come in a different orientation and position in each game. For the
second level, you'll have 200 seconds plus the lime left from the first level, in the third level
you'll have 150 seconds and so on.

The game keeps Ihe best limes ot each game and invites you to beat them in the next
g a m e s .

Once you are familiar with the shapes and if you concentrate a little bit. it won't be dilticuit to
complete them. If you Ihmk solvirtg puzzles >s try bormg people, mis game will change your
opinion. Try it.

Page 32

B U O T E M U P

Tne bionic warrior BisOop used lo destroy whole groups of enemtes in his space fighter.
When his craft got loo old and he couldn't get a new one, he started to wrestle. Now this
horizontal Space-invaders killer evokes the space odysseys of your youth.

In ihe title screen you have to press key 1 to start a game. During the game, the spaceship
fighter will De controlled with the cursors and shots will be made with the Space key. You
have three lives to advance uniil you beat the filial enemy.

Each time a whole group is eliminated, a capsule with a letter or with a small metal molecule
will appear in the screen. H the word 'BONUS' is completed with Ihe capsules of letters,
you'll got rewarded with an extra life. And each time you lake one of the metal molecules,
the power of tho shot will be increased.

If Ihe fighter collides with a shot or with an enemy it will be destroyed and will lose one ol its
lives. When you get a new hie, a magnetic field will proiect the fighter from Ihe enemies lor
a few seconds and then it will disappear.

If Bishop was able to do it, we are sure It is easy to do it.

P A C C M i l A N

Fatty Paco, 36 years old, It's still afraid of the bad
guys. And II is not surprising, since there are lour
bad guys who have something very personal
against him. II you don't know this game, you
haven't been involved with videogames for very
long because th i s I s I he bes t known c lass i c
v i d e o g a m e . P a c o - m a n i s a c o n v e r s i o n o f a n
arcade videogame which was extremely popular a
few years ago.

This game gets you hooked with the challenge ol
eating as many points as possible and In turn
trying not to gel eaten. These lour iiiite gtrasts will give you trouble along the 10 levels ol
increasing difficulty.

There are not spectacular graphics, or shots or explosions. The only weapon Paco has Is
four magic pills, In the corner ol the screen that for a tew seconds allow him to eat the
ghosts Instead ol being eaten by them.

The ghosts' inieiligence is used to surround Paco and it will increase more and more in each
level. You have two extra lives and two more when you get to 10.000 and 50.000 points.

You learn new tricks as you go on playing, for example that when you eat several ghosts
one alter another you get double score.

You must press Space in the initial screen to start playing and you can control the packman
w i t h t h e c u r s o r s .

Page 33

If ii gels too liard. there is a little trick to apply when the ghosts are getting too close; press
the Space key and Paco. gathering all the energy he has left will run faster. Without this
small advantage it would be quite difficutt to sunnve level 10.

WORLD BOTTLE CAPS CHAMPIONSHIP

The good thing 8t»ut having a bottle caps race is that any adult that used to play this game
m the street (with real bottle caps) when he was a kid can enjoy tho game again now and
hot feel embarrassed by it.

What is a bottle caps race? You design a winding circuit on the sand and compete with
other friends to see who takes a bottle cap by hitting it with the finger to the finish fine first.

This world championship will be run on an Olympic sand circuit, designed by the best
graphic artist at Hammer Technologies. The game is an original mi* between a race car
game and a goil game.

From the main menu you can use keys from 1 to 3 10 select one ol the following three
options respectively.

Practice. To be able to be good at controlling the bottle cap and learn the circuit. You won't
get anywhere without practice or effort, just like in real Me.

Compete two players. This is one of the greatest challenges to nave fun with a friend. The
first one that gets to the finish line will be the winner

Compete against the computer, if your fnends think they have better things to do, leave
them. The computer will challenge you to conssiete the circuit before it does it (and the
computer Is specially wicked).

The game control is done with the frtlowing keys:

Lett and Right. Choose the shot artgle for the bottle cap.

Up and Down. To raise the bottle cap. This way you will be able to make faster turns; it Is
hard but once you learn how to do 11 you'll earn plenty ot time since you will be able to
make the turn with a single move.

Space or Enter. To shoot. The more you keep the key pressed the more power the cap
will gel. The power Is indicated by a score keeper traced in the upper right side of the
s c r e e n .

When two caps are playing, one against the other, each one will have a turn. At the
beginning ot the game, who starts tirst will be determined at random.

if in a shot a cap gets out ot the circuit, it wilt have to go back to its onginai position as a
penalty. So you better gel accurate.

Page 34

TOTAL BILUARE)S

European billiards wllh an aerial view of the
table. Two players compete and each one
tries to reach a certain number ot cannons
before the other. It is not possible to play
against the computer in this game.

The game is played in a table with no holes
and a cannon Is achieved when the bait
touches the other two. In the original game,
b o t h p l a y e r s u s e t h e s a m e w h i l e b a l l ,
another plain one and another wrth a point.
Both players rnust try to hit the opponent s ball and the third
ball, the rod one. in whatever order.

This game replaces the while ball with the point by a yellow
ball. The rest remains the same.

In the options menu ol Ihe game, by using the cursors and
Enter, or Ihe mouse, you can select the number of points (cannons) you have to get to win
or you can start the game.

The first turn is always lor ihe white ball. Pressing the left button of the mouse you can
use three modes, all of them necessary to make a shot:

Aiming. This mode can set the shot angle by moving the mouse laterally. A blue circle
gives you some help, showing where Ihe ball will hit lor the first time

Spin. This mode can select, in the lower right side of the screen, where you want to hit
the ball with the cue. To do this you use again Uje mouse and yoo may now move it in
any direction. It you are able to control the spin of the bail you'll be able to gel many
c a n n o n s .

Shot. This last mode is to make the shot. To do that you have to move the mouse
vertically, koepjhg in mind that the program will detect how hard you have hi! according to
the vertical speed of the mouse.

In order to adiusl the parameters correctly, you may access any of these modes as many
times as necessary (pressing the mouse button several times).

You can abort Ihe game by pressing the key ESC. This a game that challenges your logic
and your skill.

Pago 35

H E U O B A L L

Isn't it vi/eird that in the lar fuluro people still find It tun
10 see how two opponents score goals one against the
other The only problem is that they cannot find
anytiody to run up and down a Held: money has
disappeared and the ptolesslonal sportsmen are not
going to play for tree.

l -uck i ly the mul t inat ional company Hammer
Technologies, which in this centum builds high tech
haiCware has solved this problem by constructing
weightless hovercrati machines lor mass sports.

Soccer is called Helioball now and two hovercratts play each other. Now the eleven players
ot each team are Inside their team hovorcrall cabin, watching the game live on a Hammer
panoramic TV (the best one) at the same time they are playing. The novercrafl are
immense, the eleven players are not packed In there, their cabins are something like a small
Cinema and even have sauna (so lhat the players can give the impression ol being tired).

This game allows you to travel to the future and control one ot this lloating monsters which
push a mechanic ball (guess what brand it is?) to the goal. The other hovercraftwill try ol
course to push the ball to the other goal.

In the title screen, you can press any key to go to the options screen (e«cepi ESC, which
e»ls the game).

The mouse selects options as important as who controls each of the hovercraft or the game
lime (depending it you are in a hurry), II both teams are controlled by the computer, the
game will be shown on TV (demo mode) and to switch channels (go back to the menu) you
have to press ESC. You may have two players with the screen divided. To start the game
you have to click over the button start.

The hovercraft control keys for both players are;

Player 1. Cursors keys.
Player 2, Q, A up/down and R, T lefVrlghl.

Everything is legal during the game. The most intelligent hovercraft (the one which scores
more goals) will normally win.

Page 36

S O C C E R

Two learns play agamsi each other in this game. You
can jusl walch the match (selecting the computer as
control ol the lirsi team) or play against the machine
using the foystick or the keyboard. A key (or the
mouse) must be pressed to access the options
s c r e e n .

This game has to be here. It a very simple adaptation
of soccer. There are many rules which are not here;
cards, penalty kicks, walls and so on.

Once in the screen, the program will always be controlled through the mouse. In the screen
you may select the type of control, the team colours, the screen resolution as well as the
possibility of changing the teams and the players names.

To change the type ol control, you have lo click on Ihe icon on the upper left corner. By
default there Is a keyboard. The only other possibilities are Ihe joystick and a demo by Ihe
c o m p u t e r .

To change Ihe team's colour, you have to click over ihat you wani lo change: socks, shorts
or sh i r t bands .

To modify the screen resolution, you have lo press on ihe bar where the resolulion is
specified and the program will aliernate two possibilities: high resolution (640x480) and low
resolution (320x2()0).

To change Ihe names ol the teams and ot thoir players you will access to another screen
where you may edit them. The game will save the colours and names set-up for future
e x e c u t i o n s .

There are also two buttons in the lower part, one to each side ol iho screen. TTte left button
is to go back to Ihe introduction screen (from this screen you may exit the game by pressing
ESC) and ttie right button to start a game.

Names editing screen
To change a name you have to click on it. A blinking cursor will appear and you may Ihen
introduce data by clicking with the mouse over the keyboard In the lower part or otherwise
via keyboard. To end you have to dick with the right button of the mouse or press Enter.

To exit this screen, you have to click over the button on the lower left side.

Controls during the game
To control the selected player you use the keyboard or the joystick. The keytxtard controls
a r e :

Cursors, To move players.
Control. To shoot or tackle another player.
ALT. To pass (witli ball possession).

When you use Ihe joystick, the lirst buttoh will be used to snoot and the second to pass.

Page 37

For ihe mrows, goal kicks, comer kicks, or cenicr kicks you can use ihe player you warn 10
pass trie ball by using the usual controls lor moves.

C H E C K O U T

Checkout is a ehessboarO game, fun even for those people wtto don't like chessboard
games. It is a new game that has been created lor OIV Games Studio. So nobody has an
advantage when playing.

It is a very simple game which uses artilicial
inielligonce techniques to calculate the moves the
computer makes. This makes it one ol OIV most
advanced examples. So you shouldn'i try this list
until you are experience enough in the creation of
p r o g r a m s .

In a board ol 6x6 squares, two teams of pawns
each starting from one comer have to try to get to
the opposite comer. The games are quite tJynamic
since they are over in a relatively tow number of
m o v e s .

The game is divided into 5 levels, each of them with one more pawn at each side. You have
to go over through these levels unlill you beat the computer in the last level.

You always start Ihe first level with six pawns at each side. Every lime you pass a level you
go to next but if you lose you have fo go back to first level. II you lose in the first level, the
game will be over (this wilt happen at least the first time you play).

The game is always controlled through the mouse. In the first screen you can select start a
game, see the game Instructions (the rules) or exit It.

At the beginning of the game you can choose if you want to play with white or with black.
White always starts the game.

To play you select a piece (by clicking on its square) and then to choose where you want to
move it to. The computer only allows to select the pieces which can be moved and the
moves which are legal according to the rules.

The computer wili never play as it cNd before; it will change its siyle and he never makes
m i s t a k e s .

II you like the challenges which require a liiiie bil ol concentration, you'll have greai fun wilh
this game. You must not got frustrated at first, it's absolutety normal to lose in the firsi three
or lour games (or five or six or seven...).

Page 38

CHAPTER 2: The Menu Sytem

This chapter will flescnbe all the program's options accessible Irom the main menu, and
separated in their different options menus. This chapter has been des>gned as a text to
consult, lor the user to obtain quick information about the programs options.

P R O G R fl M S M e n u T F
Mew. . .
Open progran... IF4]
C l o s e
s a v e C F 2 1
S a u e p r o g r e n a s . . .
E d i t n e n u . . .
R u n p r o g r a m E F i 0]
C o m p i l e [F i l l
D e b u g p r o g r a m I F l S I i
C r e a t e i n s t a l l a t i o n . . .

2.1 The proflrams menu

This menu controls ail the issues related to the listing of
the programs, their edition and their execution, it allows
us to open and save listings, execute a code or edit it.

The whole list of available keys to edit a program can
be soon in Appendix D. When there is more than one
program window, it will only be possible to edit in the
selected window. To select another one, it is necessary
to click on It.

Each of the options ot this menu is now descnbod.

N e w . . .

This option is used to start a new program (to start
writing a listing). The tirst steps are described in Programs Menu
Chapter 5. A dialog box. in which the name of the new
program must be specified, will appear. Thus, the
archive name for the program must be specified (up to
eight characters may be used). The extension PRC will
be automatic îy added, if an existing archive name is specified, the program will ask you
whether you want to overwrite the program, if you answer Accept, the existing program will
be overwnitcn. Fffialiy. a new empty edit window will appear, ready tor the new program.

O p e n p r o a r a m . . . I D i r e e l l i e v : F 4 t
This option is used to load a program. The name of the archive (with extension PRO)
containing the program must be specified in a dialog box. that may be selected either by
clicking on it or typing its' name. When the program is loaded into the environment, an edit
window will appear with the program's listing. The F10 key may be pressed to execute the
p r o g r a m .

C l o s e

Closes the selected edit window. The program will ask for contirmation. if you have modified
the program and it has not been saved, choose Cancel and press the F2 key to save the
program before closing it, as the program is not automatically saved on closing the window.
Therefore, if a listing is modilied and then closed wilhout having previously been saved, the
changes will be lost.

Page 40

Save IDIrect key: F2>
Saves the contents of the selected edit window in the cofresponding archive of extension
PRG or, in others words, in the indicated archive on creating or opening the progtain. The
mouse pointer wil depict an hourglass for a while, to indicate that the faslt is tielng
performed. If the aim is to save the program wilh a different name, in another archive, the
option Save as... of this menu must be used.

S a v e a s . . .

Saves the selected edit window in another archive (with a different name). A dialog bo* will
be open, specifying the new archive with extension PRG. If the chosen program's name
already exists, the program will ask for confirmation before overwriting the program with the
contents of the edit window. In (act, the extension PRG is not obligatory, but advjsabie.

E d i t m e n u . . .

This option gives access to a new options menu, ihe programs' edit menu. The options of
this menu are explained in section 2,2 of this book, where the basic commands ol the
program's editor are shown.

E x e c u t e f P l t e c t k e y : F l O f

Compiles and executes the program of the
selected edit wmdow. If the program contains
any error, the system wilt place Ihe edit cursor
on it, reporting a descriptive message in a
dialog with two options: Compiring A Program

Accept This button must bo clicked on when the error message has been understood,
in order to return to the edit window and correct it.

• Help, When Ihe error message reported by ttio system is noi understood, then this
button Witt create a help window in which the found error will be explained in great detail.

When Accept is clicked on, returning to Ihe program's edit, it is siili possible to obtain
expanded help about the error by pressing the F1 key.

When (he program has no errors, the system will be able to finish its compilation and
execute it. To return from a program, it is always possible to press the ALT+X key
c o m b i n a t i o n .

C o m p i l e (D i r e c t t c e v : F 111

Compiles the program ot the selected edit window. The program won't be executed: this
option is only used to verify whether a program has any errors. If any error is found, then it
Wilt be reported in the same way as in the previous option, being possible to access the
expanded help atmut it, if necessary,

□e b u n a p r o a f a n t (D i r e c t k e v : F 1 2 1

Debugs the program of Ihe selected edit window step by step. To debug a program means
to execute it little by little, statement by statement or trame by frame, in order to venfy all
that is being done, how the processes are created, how the variables change their value,
e t c .

This option is normally used when a program does not work in the expected way. for any
reason. Thus, it is possible to find Ihe exact point in which the error of a program is found.

Page 41

The Debugger of programs, described In section 2.10 of this book, will be accessed with
this option. It is also possible to access it in a program's ordinary run time by pressing the
F12 key. However, in this case, the program will t>e debugged from the point in which it has
been interrupted, and not from the beginning.

The listing ol the executed program will be seen inside the programs debugger, but it won't
be possible to modily it. This is an advanced tool, that shouldn't be used uniil ihe
fundamentals lor DlV programming are correctly understood.

C r e a t e I n s t a l l a t i o n . . .

The last option ot the programs menu is
used to c rea te i ns ta l l a t i on d i sks o f t he
games created in DlV Games Studio
automatically. It will be possible to dislnbute
t h e g a m e s w i t h t h e s e d i s k s a n d
independent ly ins ta l l them in o ther
computers, wllltoul requiring DlV Games
S t u d i o f o r t h e i r e x e c u t i o n .

InstaUahon ConhguraMn

A b o u t r o v a l l l e a . I m p o r t a n t

It will be possible to distribute the games without restrictions, as Hammer Technologies
and FaslTrak Software have no royalty or copyright In this case. Thus. It Is possible to
use the programs created In OIV Games Studio with any purpose, including the sale ot
their copyrights to distribution enterpnses. direct sale, shareware, freeware, etc.

At the same time, authors ere rtof obliged to indude in their games any meniion either to
DlV Games Studio, to Hammer Technologies or to FaslTrak Software. However if you
choose to you may include the DlV Games Studio logo or a reference to it.

The archive 0IV32RUN.EXE is the only OiV component required In the installations. This
archive contains the dynamic link library with the internal functions used in the programs.
This archive will be always included by Ihe system In Ihe performed installations.
DIV32RUN.EXE is a freeware program, of free disiribuiion. whose lastesi version can
always be found In DlV Games Studio's WEB page ai www.OlV-AHENA.com.

The user is also allowed to create and distnbute ubilties or auxiliary tools lor this program
freely. With this purpose, the formal of the archives used by DlV Games Studio Is shown
In appendix E.

In order to create the installation program, the system must first compile the program to
verity that It does not have any errors and generate the game's executable archive (an
archive with extension EXE).

Once It has been compiled, a dialog box will appear In which it is possible to coniigure the
installation program. Two switches will appear in the upper part ol this dialog Pox. The one
placed to the right allows us to define whether subdirectories must be created in the
installation (otherwise, ail the game's archives will be installed In a single directory). The one
piacefl to the left defines whether a sound system setup program must be included.

Page 42

CP eBPd

ncf^lV t'P3

:souo Suwoiio) egi eje nuem iipe 9q;
u! peprpu! suojido ayi'lspuBuiujoo pjBoqXeii) a xipuaddv
u! joiips ,suiei60Jd yO!i39S su; u! jesdde Asyx
UMOdS asogi yi|M j3ma6oi spueuiujoa i!pe s;ouj aje sjsyj.

nusui S!i|i dsddse 0| Ajssseseu eq i.uoivi)i 'iujbsi
ueoq OAEM Aegi ppuo ejoiejaiu. -uiagi jo ne ui sXatj pajjp
6u|iu3!pu! 'i!P9 01 suopdo |Ei;uesse jo ssjjss e sGy nueui sim

m
nu«ui tipa MU ZZ

uieisAs oMi 01 duiujnie; 'dots hm uiej6ojd ogi 'uisjSojd peueisui uc ui sjesdde jojje
uojinoexe uo n Ab)| zŷ egi Buisssici uo JsBBnqsp .siuojSojd eg) ssopou o) oiqissod lou
S{ II 'sujii eujus ogi ly sjojie Buipodei SMpuM aiO ou eje ajegi 'sgjeiBoJd paiieisgj egi u|

uieisAs goiiei|Disui jesjeAiun sigi
giiM ppiieisgi ouidB eg) jo Adoo s ujoi) gets o) s| os op oi Acm iseg egi 'smoisAs uoiieiieisui
jegio esn oi sogsM jesn egi || uonnggisip eej| |0 'gjsjSojd ejBMeejj c Sj icgi 'Oipnis
semeo Aia 1° uieieAs 6um|bisu| josjeAiuri sgi esn i|iw Aum sigi ui peieojo suoiiciieisui egi

uiegi fiujieejo irogiiM Go|Ujp egi gxe oi
JO gjBjBojd uopeiieisui egi Buiicojo gets oi jsedde suonnq jeaueo pue idaoov ogi 'Aiieuij

uoiisiieisu! SI! Jeije peinoexa eq isnuj eujcB egi Mog saieoipui legi eBesseui
jadojd e isaBBns him gjeisAs egi ■suoiiamisui Suipaoi sb pesn eg h/m isgi eSessan

'I! saBuGgo josn eg) ssejun 'i|rie|0p Aq peiieisui
aq 01 All |||M eujeB agi eiagM Ajoioeiip egi s| sjgi '/jnejep Aq Ajoioojip uo/js/ysjsu/

'uiegi uo eujsB pessajduioo
agi GAGS 0| SB seueH^fP paiieuuo) gSnoue ajedejd oi AjGsseoau s| i| uegi aua>isip
uo eq oi St IIIIII -pBiBejo eg }sniu uiBjBojd uo/ie/jajsu; eqi eiegM AJopaj/p go yfun

induj aq Abui aBessauj Aui/ -lug// agi /o aiuBu pue igB/jAdoj
edA)" Aq ujejSoid, agi |0 eGBssaui Aug indu{ oi ueuiuiejBoid egi ;o euien

'lineiap Aq jeedde him 5yd eAjgojs aui p egjeu egi luejBojd paueitui egi /o ewBH

:go|iBujJO|U| BuiMOtiOj agi indui oi 'soxoq ixei jo souas 0 gBnojgi 'sn
MO||E ii!M *oQ SoiBip s|g! sagoiiMS jeddn omi agi jage uoiieiiBisuj agi asiuioisno oi jepjo u|

'aujeS oiiioeds e oi 11 idepe
JO Appouj 01 SI uiie egi esBO u| isnf 'oipnis seiuBg aiQ |0 \dni3S Ajopajip ogi ui pajois
'Oad'dfliaS SI lUGjBojd sigi 'linBiap Ag lueujuojiAua agi gi paiidujoo HVa30dd''dni3S
IS6! egi ppB HIM ujaisAs agi 'papnpui s| 11 g Aiesseoou lou s| msjBojd dnies sigi 'Ahbiujon

D e l e t e l i n e I D I r e c l k e v : C o n t f O l * V l
Deletes (he program's line on which the eOil cursor Is placed.

Ta p b l o c k I D I r e c l k e v : A L T + A l

Tags the beginning or the end ol a text block. In order lo tag a block, It is necessary to tag
both ends with this command. The order makes no diderence. Tagging blocks o(the
standard EDIT is also allowed, with the shift key and with the cursors.

U n t a n I D I r e c t k e v : A L T + U t

Untags the text block. The blocks selected with the ptowous command are persistent. That
is to say. ihey remain until they are deleted or untagged. The blocxs of the standard EDIT
are untagged by themselves, on moving llie cursor.

C o p y I D I r e c t k e v : A L T ^ C t

Copies the lagged text block from the current position. First, it is necessary to tag the
original block and place the cursor In the position whore it is aim to insert it. A copy ol the
text will be made, remaining lagged just in case the aim is to make more copies.

M o v e I D I r e c t k e v : A L T ' f M)
Moves ttie lagged text block to the current position. This task is similar to the previous one.
with the proviso that the original text will be deloted alter being copied lo the current
position. Tire moved text will also remam lagged. Thus, it is possible to continue to move or
copy It.

D e l e t e I D I f e c t k e v : A LT « D 1
Deletes the tagged text block. It won't be possible to undo this task. Thus. ii must be used
careluiiy II a big block is accidenlally deleted, it is advisable to Open the program again
(without saving the existing copy), lag the deleted block in the new loaded wir>dow, and copy
it to the window >n which it has been accidentally deleted.

G o t o . . . (D i r e c t k e v : F 5 t

Directly goes to one of the program's
processes. Thai is to say, It places
Itie edit cursor of the program's
window at the beginning ol one ol the
p r o c e s s e s .

On using this command, a dialog box
will appear, containing a listing ol the
processes found in the program. It is
possible cither to select one through
the mouse or to press the ESC key to
remain in Ihe current position.

A s w i t c h w i l l a l l o w u s t o I n d i c a t e t h e
order in which the list of processes is shown, following either the o'der ol appearance in the
program, or the alphabetical order.

To some extent, processes are similar to the functions of other languages, but in DIV they
are aimed at controlling the games' graphics (also named sprites). Thai is to say, they are
basically blocks ol the program that determine the performance of a graphic, or a kind of
graphics, ol the game.

n ^ n u . o p c i O A e s t) ,
o D j e t o 2 (9 N p r i „

s (V 9r
S fl P C C i e n ^ P o ' , . w x ? o s j (9 r 4 p n) .
n e n u O ;

n r k < 4 P & l > f O (. ^ r i 0 4 i .

s o n o r ^ i) ,

h u n o C x . s t r
c o c n e c x v a P M u n t o) .

n > n » n d P 4 0 > I
b d i a t ^ r a p n a d c o c n r) . I
Q u s c d - d e n o p o . c

Us l O l P rocesses

Page 44

Search. . . tPl rect kev: ALT*n
Searches (or a text sihng in ihe program. This
option will De used to locale a point of the program
or a name inside It. A dialog box with a text will
appear. The sequence of characters tinai Is intended
to be (ound must be inserted in this text.

This dialog contains the two following switches to
define the type of search mat must be periormed.

Whole words, indicates (when activated) that Ihe Inserted siring must be searched for as
a complete word and not as a part of a bigger word (lor Instance, word' must not be
found if you write Vro').

Upper case/lower case letters. Indicates that Ihe text must exactly be found as It has
been written, distinguishing between upper case and lower case letters.

In this box. Accept must be clicked on In order to start the search tor the text. The search
will be always carried out Irom the current position of the edit cursor. Ttrerefore. If the aim Is
to search for the text through the program, tirst the cursor will tiave to be placed at the
beginning of It, In line 1 and column 1 (this can t>e done by piessing ConlroUPg.Up and
then Home).

R e p e a t (D i r e c t k e v : A L T * N I

Repeals the last search, it searches again for the last text string ttial was searched for, from
the Current position. That Is to say. It searches lor the next match In the program.

When [here are no more matches of the searched text In the rest of the program's lines, the
system will report it.

F i n d t « x t . . .

J'Jil-)!.' ■"''•'•fill—
T

I I r 1 - 1
StM.- r -n r. i ' A TextS i ' im i

R e p l a c e . . . I D I r e e t k e v : A L T * R t

Replaces a text string by another one in the
program. This option can be used, for Instance. 10
replace a name (of a vanable. process, etc.) by
a n o t h e r o n e .

A dialog similar to the one used to search for a text
will be shown. But m this case, there will be a
second text box m which it is necessary to Indicate
the text that Is going to replace the Indicated text In
the fi rs t one .

R e p l a c e t e x t . . .
T g j T O . . r s ' r r

Replace lotl
The two previous switches appear again, lultilling
the same (unction. In order to replace a name by another one. it is advisable to activate the
W h o l e w o r d s s w i t c h .

The replacement of the text will Pe carried out Irom the current position of the edit cursor in
the program, ignoring the previous matches When the text to be replaced Is found, before
the replacement, the program will offer the following options in a dialog (highlighting Ihe
found text In ihe program's window):

Pago 45

Yes. To replace the text In the hrghlighted position and continue to search lor.
No. Not to replace the highlighted match, but continue to search lor.
Wl. To automatically replace the rest ol the matches, including the one that is highlighted
currently.
Cancel. To cancel the text replacement's task (no more replacements will be perlormed).

To press the ESC key or to close this dialog win be interpreted by the program as il the aim
was to linish the replacement task.

2.3 The palettes menu

This menu controls the tasks dealing with the colour
palette that DIV Games Studio is using. It allows us to
load and save palette archives (with extension PAL), edit
It. put it In order, etc.

The essential concepts about the colour palette are
included in chapter 3 In the environment, there is always
only one active colour palette. The last option of this
menu {palettes \ show palette) must be used to display
it. It is QdvlsaPle to havo the active paloilo visible in the
environment to get onontated when It comes to
performing tasks with it.

PALETTES Menu CC

Save palette... S
lEait "parette::^ 1
Organise palette.J
herge palette...

' S h o u p a l e t t e
Paiotro Menu

It IS advisable to define, at the beginning of a new project (game), what is the colour palette
to bo used as. during iho game, all graphics displayed on ihe same screen must have been
created with the same colour palette. Otherwise, they would be displayed incorrectly.

O p e n p a l e t t e . . .
Loads the colour palette from an archive. On activating it, a dialog box will be opened, in
which il Is necessary to indicate an archive of one of Itio following types: palettes (PAL),
graphics tiles (FPG), bit maps (MAP. PCX or BMP) or letter fonts (FNT). It there are
graphics loaded in the desktop of OiV Games Sfudio, ihe system will ask whether they must
be adapted to the new loaded palette. It the answer is Accept, they can lose quality.
Therefore, the alternative Is to dose them first and reopen them later.

S a v e p a l e t f e . . .

This option allows us to save an archive with the current colour. A dialog box will be opened.
Inside it. it is necessary to indicate the archive name in which the palette is gomg to be
saved (for that, archives with the extension PAL will be used). It is not possible to save the
colour palette in graphics tiles, maps or fonts. Moreover, information about the colour rulers
defined inside the graphic editor is stored in the palette archives .

Page 46

E d i t p a l e n e . . .
On choosing this option, a Qraiog box with
the palette editor will be opened. Inside it. it
is possible either to modify the current
palette of the system or to define a new one.
While the palette is edited, the colours of the
desiriop may appear incorrect. This problem
IS normal and if will be resolved ort exilittg
this dialog box.

Alt the colours ot the active palette appear
occupying the greatest part ol the box. A
small square will tag one of these colours;
this is the colour selected for editing. In
order to select another colour, oliott on it.
The lollowing information about the chosen
colour appears in the right part of the box:

PaieTte Editor

Number of ihe colour's order within the palette. This number appears as a declrttai
between 0 and 255, and as a hexadecimal, between 00 and FF.

The red, green and blue components ot the cofour, which will be numbered from 0 lo
6 3 .

Three vertical scroll bars, lhai can bo used to modify the three components of Ihe
colour. In the same order as in the previous case.

Three switches with the loiiowing function appear in the lower part of Ihe box:

Range, it Is used to Oefine a gradual colours' range. It is necessary to press on the first
colour of the range and define it with the scroll bars. Then, do the same with the last
colour ol the range and finally (with the last chosen colour) select this switch and click
again on the first colour. The system will define Ihe inlormediate colours with a gradual
r a n g e .

Copy. To copy a colour lo another poslbon ol the palette, ft is necessary first to choose
the colour, then this switch and, finally, the destination position.

Change: it works ih a similar way to the copy function, with Ihe proviso that it will only
exchange the origin and destination colours, instead of copying the origin colour to the
d e s t i n a t i o n o n e .

Finally, three buttons allow us, from left to tight, to vaiidato the performed palette edit, undo
the last modification and cancel the edit (undo all the changes made since tlia editor was
entered).

Page 47

A r r a n g e p a l e t t e . . .
Allows us lo arrange colour paleties. This option
is uselul to edit maps coming from other
graphic or rendering programs, and having a
colour palette out ol order. This tasK will
lacllitata these maps lo work inside the graphic
editor, making it easier to locate the colours. A
dialog box will show lout possible orders of the
palette's colours The order considered more
appropnate must be clicked on. This dialog box
fin ishes w i th two bu t tons tha t a l l ow us to
confirm this selection or cancel It.

M e r o e p a l e t t e s . . .
This is an advanced lask, that allows us to
create one colour palette from two. II must be
used when the aim is to use graphics with
dilfereni palettes simultaneously in a game.
First, one ol ttre palettes must be loaded in the
enviionment and then, this option must be used
10 se lec t an arch ive wi th the o ther one. Psiene Organiser

The system will create a mixed palelle Irom
both. Alter this task, the best thing to do is save this palette in a palelle archive (PAL) to
have it located and not to lose it. After that, the graphics must be loaded again with the
previous colour palettes, indicating that their palettes must not be loaded, but they must t>e
adapted to the palette of the system. Finally, once it has been veritied thai the graphics ol
both palettes lock good with the new palette, they are saved again In
tfteir respective tiles.

D i s p l a y p a l e t t e

Displays the active colour palette In the environment. This option will
create a new wndow In the desktop, where it will be permahently
displayed. Only one active colour palelle can exist at each moment.

Display Palette
2.4 The maps menu

This menu controls the tasks related to the maps. The maps,
also called graphics or bitmaps, are simply trames ol any
si2e that can be used in the games as backgrounds, spntos.
objects, screens, etc. This menu gives nccess lo the loading
and saving ol maps in the disk, as well as to the graphic
editor, which is the tool used to create or modify those
frames. Many maps can be handled, loaded in ihe desktop,
etc. The only limitation Is that all of them must use the same
colour palette, it two maps have to use different palettes, one
ol thorn must be closed before opening the other.

Besides the options ol this menu, it is possible to perform
some other tasks with the maps windows. In order 10 drag

Maps Menu

Page 48

them, it Is necessary to click on them with the left moose button and, without releasing it, to
move the mouse to the destination position. These tasks are the lollowing ones:

Make a copy of the map. Drag the window to the desktop's wallpaper (to a screen zone
In which there is no window).
Paste a map on another one. Drag a map window to another one. The graphio editor
will be entered, being then possible to paste the map in the desired position and
c o n d i t i o n s .

Close a map. Drag the window to Ihe bin (first, the bin must be activated with the option
system \ bin). The system will close Ihe map without asking for conlirmatioh.
Include a map In a graphics' file. Drag Ihe map window to the file window.

Several options ol this menu only interact with one map, even it there are a lot of them
loaded. The action will bo performed on the map selected among all of them. In order to
select a map. the lelt mouse button must be clicked on it.

N e w . . .
Creates a new window with a graphic map. The only
necessary information to create a new map is to know its
width and heighl in pixels, which will be roguesled in a
dialog box. Any size, Irom 1x1, is valid wiih the only
limitation of the available memory in the sysiem. After
having selected Iho size and clicked on Accept, a new
map window will appear empty (in black) in the desktop,
in order to edit the contents ot this window, it is possible
to doub le -c l i ck on i t w i th the le f t mouse bu t ton . Now Mnii

O p e n m a p . . .

Loads a map from a disk archive. The archives ol extension MAP are the own format ol DIV
lor the maps but, with this option, other archives with extension PCX and 8MP can be
imported, providing thai they are frames in 256 colours

C l o s e

Closes a window with a map. The syslem will ask lor confirmation bolero closing a window
with a map. If the aim is to save the contonts ol the window, the Save... option must
previously be used In order to update Iho disk archive that contains the frame. Onco a map
has been closoO. tho only way to recover it Is to load the archive again fit il has been savod
previously).

C l o s e a l l

This option closes all the map windows loaded in the desktop, except those that have
been minimised. Previously, the system will ask lor conlirmalion. This option is useful
when the desktop Is filled with maps thai have been included in a graphics tile, or maps ol
the generator ol explosions, to prevent thorn Irom having to bo closed individually.

S a v e

Saves Ihe current contents of the selected map In its archive. The mouse pointer will
momentaneously depict a hourglass, to indicate that the task is being performed. If Ihe map
had no previous archive, the system will show a dialog box in which, a name for Ihe new
archive must be specilied. The Save as,,, option of this menu musf be used to save a map
i n a n o t h e r a r c h i v e .

Page 49

S a v e a s . . .

This option allows us to save the contents of the seleciecl map window in a new disk
archive. A dialog box. in which the archive name must be speoiied. will appear. Archives
MAP, PCX or BMP can be saved, depending on the extension given to the archive name.
By default, archives MAP. the own format of D1V. wilt be saved. Only this format can be
used in the programs created in DIV and it is not possible to load frames of archives PCX or
B M P i n t h e m .

R e - s c a l e . . .
Re-scales the selected map to a new size.
That is to say. increases or reduces the
f r a m e ' s s i z e . T h e n e w s i z e m u s t b e i n c l u d e d
in a dialog box that wil l appear with two
s w i t c h e s :

Re-Scalo A Map

Percentages By default, the new size will be specified in pixels. But it can be indicated in
percentage, as a integer, if this switch is activated. For Instance, 100 is the original size,
50 is hall and 200 is double.
Ranges of gray. The new copy of the map will be created in colour by default. However,
this switch may be activated to create it in black and white.

The reseating data for the horizontal and vortical axes must Do included in the toxis boxes
iWldth and Hefght. Accept must bo clicked on after the indication of these values, and the
system will create the new map.

EdltjTiaB
Edits the selected map. The user will directly enter the graphic editor. Thts task can also be
perfomted by double-clicking on the map window with the left mouse button. The right
mouse Dullon or the ESC key must be pressed to exit this editor.

(t e -sca ie nap

J

_ f

J [= 1

E x p l o s i o n s G e n e r a t o r

E x p l o s i o n s o e n e r a l o r
This option gives access to a dialog box to
automatically generate a series ol frames for an
explosion. Each of Ihe frames will bo created in an
independent map. The maps will pe created with
the colour palette active in the environment. Later,
if the aim is not to preserve the created maps, it
can be advisable to use the Close all option to
e l i m i n a t e t h e m .

Two text boxes appear In the upper part of the
dialog. The Width and Height ol Ihe maps to be
generated must be inc luded in p ixe ls m both
boxes. The greater these maps are. the longer the Generates Exptosrons
generator will take to complete the sequence of
frames producing (he explosion.

By clicking on the boxes appearing below the text Colour a dialog will be displayed wilh the
colour paieiie, and thus, It will be possible to select ihe iniiiai (the darkest one), intermediate
and final (Ihe lightest one) colours of Ihe explosion, respecliveiy. The generator will use as
many intermediate colours as arc found in Ihe active palelte.

Page SO

Three switches namefl Type A, Type B and Type C allow us to choose among three
different algorithms (o generate the explosion, In order of complexity: the first type is the
easiest and more homogeneous one, and the last typo is the most complex one.

Next to these switches, two other text troxes appear. The number ol frames that the
complete sequence ol the explosion must comprise, have to be included m the first one,
named Frames. The second text box delmes the ollcct ol Bump (Granulation) applied to
iho explosion. The higher this value Is, the louder ihe "noise" or "vibration" ol the explosion
wi l l be

Each lime an exptosioh is generated. It will be difforohl, even if exactly the same parameters
are included in this dialog box. For that reason, it is advisable to carry out several tests until
Ihe definitive sequence is obtained.

The possibilities ol animation of the graphic odltor can be used to display Ihe animated
explos.on. For that, it will be necessary to arrange the windows containing the explosion
frames (placing them one on each other. In order), editing the first one (doubie-cliclung on it)
and, once the editor tias been entered, use tna TAB and Shift +TAB keys to see the
animation. The Z key can be used to vary Ihe scale at which the animation is displayed and
ESC to exit the graphic editor.

Add maps to a file. This can be done by dragging the maps windows to the file's
w i n d o w .

Copy maps from a file to another one. For that, they must be dragged from Ihe list ot a
file to the l ist of Ihe other one.

Flies are not loaded m the computer's memory, as they normaliy occupy a lot ol space. On
Iho contrary, their information always remains In the archives with extension FPG of the
disk that coniain ihem. Therefore, there Is no option lo save Ihe files, as they are always
stored, that is to say. what is displayed on scroen is exactly the same as what is stored in
Ihe arch ive o f the d isk .

Important: All the maps ot a file musi use the same colour palane. Those maps using
a different palette must be adapted to the palette of the file, in order to be includ̂ in It,

N e w . , ,

Creates a new file FPG on the disk lo store graphics maps with the active palette in Ihe
environment- The archive name must be spocilled in a dialog box. The system will

automatically add the extension FPG to It. If the name of an existing file Is specified, It will
be asked whether the aim is to overwrite it. If the answer Is yes. all the maps previously
stored In the fi le wi l l be deleted.

O p e n fi l e . . .

Opens a new window from a FPG file. The name of an archive with extension FPG must be
selected In the dialog box of archives managing. If the file has a palette different from the
one that Is active In the environment at that moment, as options the system will offer either
to load the new palette or to close the file. It Is also possible to open the file without loading
its palette but It Is not recommended, unless you are an expert user.

C l o s e

Closes the selected file window. As the contents of the files Is always stored on disk, their
information (the maps) won't ever be lost. For that reason, the system won't ask for
confirmation In order to close a file, as it can always be recovered by opening it again.

S a v e a s . . .
This option allows us to save the selected file with a different name (in another archive
FPG). That is to say, a copy of the file with a new name will be made. A dialog box will
appear. The name of the new archive FPG must be Included in this dialog box. Once again.
If the name of an existing archive Is indicated, its contents will be replaced by the contents
o f t h e fi l e s e l e c t e d i n t h e e n v i r o n m e n t .

L o a d t a g s
Loads the maps tagged in the selected file In the desktop. On using this option, the switch
Tag/Drag of the window's file must be tagged, being thus possible to previously tag the
maps Intended to be loaded (opened) from the list Included In the file (by clicking on them
with the mouse). It Is possible to untag maps by clicking on them again. As many maps
windows as tagged in the file will be created. This option Is useful to modify these maps In
the graphic editor and then, to drag them again to the file.

In order to load maps individually, one by one, they can directly be dragged from the file
window to the desktop.

Deletes the tagged maps In the selected file. This option is used to eliminate maps from a
file when they are not necessary any longer. The maps have to be tagged previously,
exactly the same as In the previous option. Once these maps have been deleted, it won't be
possible to recover them.

To individually delete maps, they can be dragged from the file window to the system bin
(which is shown through the option system \ bin).

Page 52

2 ^ T t t e f o n t * n w n u

This menu allows us to perform actions related to trie letter
fonts of the games (or letter types), including the access to
the generator ot fonts used to create new fonts. The letter
fonts are used inside the graphic editor and in the games,
to wr i te tex ts .

A t t h e s a m e t i m e , t h e f o n t s a r e s h o w n i n s m a l l w i n d o w s

that indicate the set ot characters they have defined. The
characters are dithded into the following groups: numeric
digits, upper case letters, lower case letters, symbols and
expanded characters.

F O N T S M e n u

F o n t s M e n u

To visualise a sample of the characters contained in a font.
It is necessary to click on its window with the left mouse button.

The fonts are saved in the archives disk FNT and adapted to the palette ot the enwronment
when it is loaded arKi when the active palette is chnnged. In order to see a font with its
original palette, the palettes \ open... option must be used, indicating tne name ot the
a r c h i v e F N T.

The fonts wndows always correspond with a FNT archive. Therelore. there is no option to
save tne fonts, as they ate always saved. That is to say. what is shown on screen is exactly
what i s saved in the d isk a rch ive

f o n t s g e n e r a t o r

to . fonr. rm
tKKttinL.IFS ̂

□ B

G e n e r a t e f o n t —
This option will create a new window with the
generator of letters fonts. New typos ot letter for
the game can easily and quickly bo created with
this tool. The lollowing steps must Pe followed to
generate a new font:

• First, select the new archive FNT in which the
created letter font must be saved. For thai. It
IS necessary to click on New font, in the
bu t ton marked e l l i ps i s . A d ia log box w l l
appear to i nc lude the a rch i ve name. By
defaul t , the font wi l l be generated in the
archive NEWFNT.FNT valid to carry out tests.

Second, choose the source font. A dialog will
be displayed by clicking on Source, m order Font Generator
to seiect the font type. One ot the archives
wth extension IPS of the list must be selected. A sample can be seen in the dialog iiseit
by clicking on any of them. Once the desired type has been found, the Accept button
m u s t b e c l i c k e d o n .

• In the upper right part ot the box. two input text boxes allow us to define the size of the
font characters. Their Width and Height must be defined as any number ranging from
16 to 128. For sizes smaller than 16x16, only the numbers shown in tfie adjoining list
(8x8. 10x10. 12x12 or 14x14) can be used. They can be selected on clicking on the list.

Page 53

For fonts bigger than 16x16, two different values for width and height can be indicated,
becoming distorted the original appearance.

• In the section Font (left central) either to select the ink colour for the font by clicking on
the colour box or to drag a map with the texture to this box. If a texture is in this way
defined as a filling of the letters font, it will be possible to select in the Mosaic switch
whether this texture must cyclically be repeated. By default (without the switch activated)
the texture will be re-scaled to the size of the font characters. That is to say. in order to
use a texture in a font, it is first necessary to open or create the map with the texture and
then, to drag it to the fonts generator.

• In the section Outline (middle central) it is necessary to define whether an outline must
be created in the fonts characters. If the answer is yes, the outline's width in pixels must
first be specified, by using the buttons - and +. Next, the direction of the outline's lighting
can be specified where a X appears between other two buttons - and + (the symbol X
indicates that the outline is not going to be lighted). Finally, the colour or texture of the
outline will be specified in the same way as in the previous section.

• In the section Shadow (right central), the shadow of the characters is defined. First, It Is
necessary to indicate its horizontal shift (in pixels), keeping in mind that the positive
numbers are to the right, and then the vertical shift (now, the positive numbers are in the
lower part). If both shifts are left at zero, no shadow will be created. Later, it is necessary
to choose the colour or texture for the shadows again. A dark colour is normally
specified as the filling of the shadows, but not the first colour of the palette, as this Is
the transparent colour and consequently, it is not displayed.

• With the button called Test, it is possible to see a sample of the font at any moment.

Thus, the previous parameters can be adjusted better. The text for the demonstration
can be input in the text box next to this button.

• Finally, the Generate button must be clicked for the system to create the new characters
font in colour in the indicated archive FNT. Then, a confirmation dialog will appear. In it,
it is necessary to indicate which are the five sets of characters that must be inctuded in
the font, activating the corresponding switches. All the switches must be activated to
create a complete font. For instance, if only the numeric digits of the font are going to be
used, it is better to create it only with these characters, as the archive FNT will thus
occupy less space on the disk and in the computer's memory.

Once the process has finished, a new font window will appear in the environment's desktop
The font generator remains in the desktop until its window is closed.

The button Close located in its lower right comer can be clicked to close the generator or
cancel the process to create a font. However, if the aim is to use it later, it will be better to
minimise the generator's window. Thus, the information inserted in it up to then won't be
l o s t .

O p e n f o n t . . .
This option allows us to open a FNT archive with a characters font previously created to
perform some tasks with it or to use it in the graphic editor, A dialog box to manage archives
will allow us to select the archive. Then, a new font window will be created in the desktop. A
sample of the font may t>e displayed by clicking on this window.

C l o s e

Closes ine selecied tont window. Conhfmailon won't be asked for, as the contents of these
windows is always updated in the disk. Therefore, the font can always be recovered by
loading the FNT archive again. Inside the graphic editor, in the option labeled write text, the
font of the programs editor will be used when there is riot any font in tfie desktop of the
e n v i r o n m e n t .

W r i t e t e x t . . .

Creates a new map with a text written with
the selected font. A dialog box will appear.
The text that must contain the graphic map
has to be inserted in this dialog. The system
wi l l create a new map window wi th th is ~
wrillen text. This option won't bo available If W"'e Text
there Is no selected fort window in the desktop. This opiion is useful when the aim is to use
a characters' torn m a game only to display one or two messages, as the graphics with
these texts will occupy less space than the complete characters font.

E x p o r t m a p
The options of exporting and importing a loni from a map will allow us to manualty retouch
the fonts created with the generator in the graphic editor. This option will create a new map
window with all the ct«raclers of the selected font. Then, to edit the characters of the font, it
is necessary to double-ciick on the map window with the left mouse button, entering the
editor, it is very important to respect the external margins of ihe characters. That Is to say.
each character can be retouched, but respecting its limits. The characters not included in
Ihe foi^t kvill be represented in this map with a pixel of colour 0 (the first colour of the palette,
that Is to say. Itie transparent colour).

I m p o r t m a p
This option allows us to obtain agam the archive FNT from the map with the characters. It
the map Is nol a font with all its characters. Ihls option won't be able to obtain the archive
F N T f r o m i t .

The maps with fonts have a format that must be respected, with a colour defining the
external margins (any colour not used in the font may be chosen) and 256 squared boxes
with the characters defined in the lonl. arranged according to their ASCII cods, indicating
the undefined characters as 1 by 1 pixel boxes.

II. during the characters' edit in the graphic editor their margins have been moditied. this
option won't be able to obtain the font agam. The system verifies that there is an external
colour In this map. and inside it. 256 boxes arranged Irom left to right, with a margin
between them of at least one pixel (of the external colour).

11 these rules are obsen/ed, even letter lonis may bo cronlod from zero In the graphic editor
in order to import them later with Ihls option.

Page 55

a . T T b e B o u n d s m e n u

T h i s m e n u a l l o w s u s l o c o n t r o l I h o s o u n d e f t e c t s ' w i n d o w s a n d

perform (he essential tasks with them, such as loading eflects.
saving them with a different name or listening to them.

The sound windows always correspond with an archive PCM of
the disk. Therefore, there is no option lo save the sounds, as
they are always saved. That is to say, wnat is shown on screen
is exactly what Is stored in the disk archive.

O p e n s o u n d . . .
Loads a sound effect from a disk archive. A dialog box will allow us to indicate the name of
an archive with extension PCM or WAV. However, when an archive WAV is loaded, the
system will automatically create another archive with iho same name but with extension
(and formal) PCM. as it is the only allowed format for the sound windows. Then, the new
sound window showing Iho contents of the archive PCM. to which it represents, will be
c r e a t e d .

C l o s e

Closes the selected sound effocl. Confirmation won't be asked (or, as the contents of the
window is always updated in the disk archive (the sound olfects can not bo edited in this first
version of the program). Per that reason, this window can always be recovered by reopening
t h e d i s k a r c h i v e

S a v e a s . . .

Saves the selected sound effect In another archive, with another name A new dialog C>ox. in
which the name of the new archive PCM must bo input, will appear. It won't be possible to
export sounds as WAV files. If (he name of an existing archive is specified, the system will
ask for confirmation before overwriting the contents of this archive.

T e s t s o u n d
Emits the sound effect through the computers' audio system. Then, the sound elfecl
selected in the desktop will De heard. This action can also be performed Py clicking on the
s o u n d w i n d o w .

Actions dealing with DIV's windows' environmonl are
controlled from this menu. Thus, ii is possible from this
menu to coniigure their appearance (videomode, fonts,
colours, wallpaper, etc.). access auxiliary utilities, ask for
information about the system or exit it.

^ rem Menu

Pago 56

C D i v P l a y e r

This option will show the CD-Audio Player on
screen. The reproduction ol music CDs in
t h e c o m p u t e r ' s C D - R O M d r i v e r c a n h e
c o n t r o l l e d w i t h t h i s t o o l . I n t o r m a t i o n a b o u t

the selected song and the time is shown in
the upper part of the CD Player's window.
The control buttons, from lelt to right, allow CDn/Playei
us: to skip back the previous song, rewind,
slop, play, last forward and jump ahead to the rtexi song.

coiM Player
■ »
T R A C K

The reproduction of a song will go on until ifie end of the CD. If the CD Player window is
closed, ohce the reproduction has started, it won't slc^. However, the CD Player can also be
m i n i m i s e d .

C l o c k

C l o c k

B i n
This option will show the bin window in the desktop. The bin is used to delete maps windows
or files windows' maps dragged to it. Confirmation won't be asked before delating the maps
dragged to the window.

V l d e o m o d e . . . / W a l l o a p e r . . . / C e n fl Q u r a l i o n

These three options allow us to conligure Ifte appearance ol the windows' graphic
environment, and they are explained in section 1.3 of the first chapter in this book.

S v e t e m i n t o r m a t i o n
This option will show information about the
resources available in the system in a dialog
b o x . T h i s i n f o r m a t i o n w i l l b e r e l a t e d t o t h e
ava i l ab t s t r ee memory and t he occup ted
memory by the loaded map windows. It will
also indicate, in percentage of resources, how
many objects, maps and windows of any kind
are loaded in the desktop out of the total that
c a n b e l o a d e d .

s y s i e n i n f o r n a t i o n C

Inlormalion About The System

A b o u t . . .
This option shows the introductory dialog box containing the information about the current
version of the program.

S h e l l M S - D O S f P i r e c t k e v : A L T * S t
Executes a session ol the MS-DOS operative system, without exiting DIV. It will be possible
to use commands of this system and programs that only require base memory. EXIT must
be keyed to finish the session of this system.

Page 57

E » l l O r v (D i r e c t k e y : A L T * X)
Exit ihe DIV Games Studio's environment. The system will
ask for confirmation before exiting definitively. By default,
the system will save the contents of the desktop for
following executions of the environment. Therefore,
information that has not been saved before exiting won't
b e l o s t .

E x i t f r o m D I V ? C

1 1 III
Exit Screen

2.9 Help option

The Index of this help hypertext of the enviionment can be accessed from the main menu by
selecting the last option

The help windows are controlled with the mouse, by using the verticat scrolling bar placed to
Its right to move through each of the help pages. For that, the following keys can also be
u s e d :

Up / down cursor. To shift the text one line up or down.
Pg.Up / Pg.Dn. To shift the help text page by page.
Backspace To go to (he previous help page (this key is used to delete Ihe previous
character).

The text Is shown In the help windows in throe colours:

Black. This is Ihe mam part of the help. Most of ihe text Is shown In black In Ihe help
p a g e s .
Gray. Those texts aimed to be enhanced as they contain specially Important Information
(such as the bold typed text of a book) will appear In gray colour.
White. The texts or words referred lo concepts or terms explained In another help page
will appear In this colour. To access this page, it Is possible to click on them, and then, to
use the Backspace key to return to the previous page's point In which the reading was
stopped.

Besides texts, frames or examples may appear In the help windows. The examples are
programs starting with a blank line and containing dark blue texts. To extract the examples
trom the help windows. It Is necessary to click on their Initial blank line. Then, they can be
compiled and executed by pressing the FIO key and to abort their execution. It is necessary
to press ALT«X.

A plain button appears in the lower nghl comer of Ihe help window. This button can be used
to expand or reduce Ihe window's size, by clicking on It and dragging It up or down.

Page 58

2.10 Programs debugger

The prograr r i s (febugger Is an advanced too l , whose use fi rs t requ i res a cor rec t
understanding of all the programming concepts explained from chapter number 5 of this
I j o o k .

2 ' 3 9 7 2

c o u n t w t * « ;
c n o

R f t u m s u w b o r i u * e i t o i f * p f 9 C 4 %

The debugger is a dialog box that can be
activated in programs' run time for one of the
following reasons:

• The program was entered with the option
programs \ debug program.

• The F12 key was pressed in a program's
run t ime.

• A n e r r o r o f e x e c u t i o n a r o s e i n t h e

p r o g r a m .
• A d e b u g s t a t e m e n t w a s f o u n d i n t h e

executed program.

This tool allows us to execute the program programs Debugger
Statement by statement, verifying the value
taken by the different program's data when necessary. It is useful because, on checking the
program's execution step by step, it can find the mistakes eventually made by the programs.

As It IS a dialog with a great deal of information, each of its sections are now described
separately.

U p p e r I n f o r m a t i o n l i n e
Two messages are reported in the upper pan of the window. To Ihe left, there is one
indicating the number of processes active In the program out of the total ttial can be
created. For instance. If it repons 23/3201, it means that there are 23 processes active In
the program and that up to 3201 could be created belore using up the available memory for
p r o c e s s e s .

The maximum numt>er of processes vary from some programs to others, depending on Ihe
number of their local and private variables.

The ldenilfylT>g code of the process selected in iho list, as well as its current stale (twrmai.
killed, asleep or frozen) are indicated to Ihe right.

L i s t o f a c t i v e p r o c e s s e s

This list appears m the upper loll pan of the debugger with a scrolling bar to its right. All the
active processes m the program are shown in it. Active processes are all those processes
that have been created and mat siiil have not been disappeared. The following inlormaiion
appears lor each process:

The process name in the program.
Its identifying code in brackets (occasionally, ihero is no space to put it ontireiy).
A letter indicating its state (A-Normal. K-Kilied, S-Asleep and F-Frozen).
The percentage of accomplished execution lor the following frame.
The scrolling bar must be used to move through the processes' list.

Page 59

Important: One ol the processes appears wilh a while tip arrow pointing out its name.
This is (he process that is being executed In the program currently. Theretora, the next
statement of the program will beiong to this process.

Orto ot the processes appears tagged wilh a biack barid. This rs the process about which
information is shown in tho right part of the window (ciose to this iist of processes). This
process may be selected with the mouse, by clicking on the list.

it IS very important to distinguish between tho process in execution and the process about
which the information is shown, as they don't have to be equal necessarily. For information
about the process in execution to be shown, It is necessary to select it (tnat ot the while
arrow) by clicking on the list wilh the ielt mouse button.

I n f o r m a t i o n l > o x a b o u t t h e i n d i c a t e d p r o c e s s

To the nght ol the previous iist, Inlormation at>out the program lagged with a Clack band In
the list (not the process In execution) is shown Its identifying code and its state was shown
in the uppermost line.

The complete process name is shown in a dark background's box. Below it there Is another
box with the graphic of this process (when it is bigger, it wiii be reduced to fit this box).

The button See data appears to the right ol the graphic. This button allows us to access
another dialog box in which all the data ol the process can be consulted and modified, it will
be later explained In the section inspecting data

The (x,y) coordinates ot the process, the system of coordinates used by it (referred to the
screen, to a scroll or to a mode 7) and the mirrors or transparencies applied to the graphic
of the process are always shown following this button.

Finally, lour Puttons allow us to access the father process (the process that called the
selected one), the son process (last process called by the selected one), the younger
brother (smaiibro, the last one called by the father before rt) and the elder brother (bigbro,
the following one called by the father after it). If these buttons don't lead to any other
process, that Is becauso there Is no process with that relationship.

P a r t i a l e x e c u t i o n c o n t r o l s

Two buttons called Exec.Process and Nexl FRAME below the previous inlormation box
allow us to execute the program partially.

Execution of the process. This first butlon allows the program to continue |u$l to the end
ot the process currenlly under execution (the one pointed with the white arrow in the list). All
Its statements will be executed until it roaches the next FRAME (until the process is ready
lor the rtexl frame ol the game).

Next FRAME The second button will execute the program to its next frame, first executing
all tne pending processes and displaying the next frame of the game (In the debugger's
background). The debugger will stop in the first statement ol the first process to be
executed in the new frame. It is possible to displace tne dialog box with the debugger (by
dragging its title bar) in order to contemplate the result of the previous frame of ihs game.

Page 60

D e b u a a i n Q b o » o f I t i a p r o g r a m ' s l i s t i n g
The code of Ihe progiam is shown in the lower part of the OeOugger. The Identifying code of
the process urvder eiecuiion (again, the one pointed with Ihe white arrow In the itsi) appears
in the left upper comer. Below it. there are three buttons and. to its right, the code window.

tn the code window, another white arrow indicates the tine including the nexf statement to
be executed by the process. It can be noticed how the statement also appears highlighlod in
whi le f rom the res t o f the code .

This window's contents can be displaced with the cursors keys. The program's lines can bo
lagged with a black band. Nevenheless, it is not possible to modify the program from the
debugger, indeed, to modify Ihe program it is necessary to finish its execution (which can be
done by pressing ALT'fX) and return to Ihe editor of the environment.

The first button called Process allows us to go in tne code window to one of the processes
of the program directly. A list containing ail Ihe processes found in the program will appear,
being necessary to select the desired process with the mouse. IHowever. it won't change the
process currently under execution, which will continue to be the same.

The second button allows us to establish a Breakpoint in the program. For that, it is first
necessary to tag Ihe line of Ihe listing with Ihe black band. On reaching this line (with the
cursor), the program must stop. Then, this button must be activated making the ilrte appear
in red.

Breakpoints can not be established in all the lines of the program, but only in tfiose for which
the executable code has been generated (In which any action is performed).

Many breakpoints can be established in Ihe program. To execute the program until if
reaches one of these points, suffice will be to close the debugger or press Ihe ESC key.

To disable a breakpoint, it is necessary to select the line and click on the same button
again.

The last button. Debug, is Ihe one that really allows us to debug the program statement by
statement. Every time it Is clicked on, one of the program's statements will be executed.
When a process finishes its execution, or completes a frame, you will pass to the first
statement to be executed of the next process.

m s p t c x (7 » 7)

c o n t r o i . t ^ p e s o

i n c . z a e

r

r D C 0 r i 5 t

Hf3 LOCAL

V
l i M M *

I M M M n

i n s i > e c t i n g d a t a

By clicking on the button inspect of the
programs' detnjgger it is possible to access
this other dialog box, m which the values of
the program's data can be consulted (and
even modified) in itve point in which It has
sioppeO. normally with ihe aim of carrYlng
out tests in i t .

Most ot this box IS occupied by the data i<si.
E a c h o t t h e m i s s h o w n w i t h i t s n a m e a n d
numenc value. This list always appears in
alphabetical order. Dialog Box To See The Daia

The data set appearing in tnis list can be seiecied through a series of switches. The two
upper switches deline Ihe two toiiowing sols.

Page 61

Predefined. When this switch is activated, all the data predefined in the language will be
included in the list. Thus, it will be possible to access the predefined local data (such as x. y,
angle, size...), the predefined global data and the predefined constants.

Defined by the user. This switch selects all the new data defined in the program. These are
the specific constants, variables, tables and structures of every program.

Besides selecting the data depending on whether they are predefined or new. they can be
selected according to the context In which they have been declared, with the following
s w i t c h e s .

CONST. This switch is used to include the constants in the list, even if the constants are
not data, but synonymous of a numeric value. Therefore, they can not be modified.

GLOBAL. On activating this switch, all the global data (accessible by ail the processes)
wi l l t ie inc luded in the l is t .

LOCAL. When this switch is activated, the local data (that is to say, the data that ail the
processes of the program have) will be included in the list.

PRIVATE. This switch selects the specific data of the process lagged in the debugger
window to include them in the list. These data are exclusively for the program's internal

The list of data can be displaced with the vertical scrolling bar or with the cursors and
Pg.Up / Pg.Dn keys.

The button Change allows us to modify the value of the selected data; only the constants
can not be modified. A new dialog will appear with a text box in which the new value of the
datum must be input. Any datum ot the list can be selected with the cursors or clicking on it.

Below this button, there are other two buttons with the symtxois - and +. They are used to
modify the index of tables and structures, which can also be done with the right cursor
and left cursor keys. The table or structure whose index is intended to change must
previously be selected in the list. This Is the way to observe or modify any element of a table
o r s t r u c t u r e

Finally, a series of buttons appears in the lower part of this dialog. These buttons,
mentioned below, allow us to display the value of a datum in a specific way:

Angle. This button allows us to display the datum as an angle. The angles are specified
intemaliy (in the programs) in degree thousandths. The value of the datum will be
displayed as an angle in degrees and radians.

Process. If the datum is the identifying code of a process, on selecting this display
filter, the name of this process will appear In the list as a value of the datum.

Text. When the datum is a text or a pointer oriented to a text (to a literal o(the
program), that text will be displayed In the list by clicking on this button.

Boolean. If a datum contains a logical value, on applying this filter to it. In the upper list
will be shown whether it is false or true. In the language, on evaluating them as logical
conditions, the odd numbers are considered true, and the even numbers are considered
f a l s e .

Once the display filter of a datum has been established, It will remain during the rest of the
program's execution. The same button must be double-clicked to display again the contents
of the datum as a numeric value.

CHAPTER 3: The Graphic Editor. Rrst Steps

3.1 General Conc^>t8

The graphic editor is descnoed in chapters 3 and 4. This toot is used to creale the graphics
of the games. The first chapter offers a program's generic view and e«Riains all the
concepts and lerms necessary to understand how it works

The graphic editor is the tool used to paint the graphics of the games. Any picture may be
created with the mouse, the colours of a palette and a little skill. Painting with the computer
is quite difterenl from painting on a sheet ol paper. Less accuracy and skili, but more
patience aie required

The editor only v/orks with maps windows
(those that any kind of graphic contains),
and the easiest way to enter it is by
doubio-ciicking on a desktop's map wilh
the loft mouse button. Once the editor has
been entered, the picture is expanded,
the mouse pomie r w i l l change and a
hoiizonial tool bar will appear with several
icons and co lours . The ed i tor can be
exited in ditfcieni ways, by closing the
tool bar. by pressing the ESC key or with
the right mouse button.

T h i s g r a p h i c e d i t o r i s a v e r y
comprehensive loot. However, it can not
replace many of the commercial programs
speeificdiiy designed to create graphics. For that reason, it is possible lo import maps in
PCX or BMP formats {that are widely spread among the graphic utilities). Thus, those who
want to use other tools to create graphics are allowed to use the frames created with other
programs in DiV Games Studio.

Despite that, a is advisable to read these chapters Oh the graphic editor, as many tasks will
be easier and faster from DIV Games Studio than tiom other programs.

If you do not have other programs to create frames, do not worry, as DlV's graphic editor
contains many powerful paint tools The features shared by many of them are belter than
those ol specific paint programs Thus, it won't be necessary to use any other program lo
create the games' frames and graphics.

Before accessing this chapter, which descnbes the basic painting concepts and terms, it is
necessary to know the use ol maps and maps files described in sections 2.4 and 2.5.

Grapnics £dr(of

Page 66

deuj Msu egi usdoaj 'usgi pue lueg)
8so|o "saAiypje aAipedsaj Jiaiii u! pspec^ sdecu sgi ne saps 'pepeoi ̂iiusasj (psm jo)

dpuj sgi ssop '(sdetu psppoj sgi sdeurep pinoo >|sbi sjgi se ausipd msu sgi BuiiPAiioe
lou) isoues jsMsue 'sdeiu pspeo] sgi ui uo|ieuuo|ui psAPsun s! sjsgi)f :jueiJoduj|

PSIGAIPS
eq isnuj sgsied msu egi jsgisgM isj|) noA >|sb ijim ilsisAs egi 'susiPd lusjapip e sssn
legi (8i!j sdpu p jo) deuj e usdo oi si ujjp sgi usgw 'uosesj leui joj siisied sigi ssn isnui
doixssp egi)o sdeuj sgi nv iusiuuojiaus aiq am "! eiisied SAipp euo isnf sApmib si eiegi

oiisied jsgioup oi paidspe ojc Aegi uoum Aii|snb sso| Ahpuijou
sojnpid sgi punoj AjjPuoisBPOo i.usjb sinoioa jBjiuns sb 'ssoiogusAaN ii eupetdsj oiioiBd
Mou egi u! jnoiop jbhuiis isouj sgi jo| nooi him oisisAs ogi 'oigdejB ibuiSuo sgi)0 lOxid
goBS joj SUP jsgiouB oi susjBd jpchoo b giiM psiBSJS PigdBjB e idepe oi siqissod osiB si ij

lusujouj ingi lu
uses sq Aiiosjjoo him siiSjBd SAipu sgi Bujsn soigdojB ogi Ajuo 'ojojsjagj. luaaiooj goes |g
SA|pB sq UBO suo A|UD inq seiisiBd ibjsass ssn ubo ssoibB agi -aiiaied jnopo sijjds og|
gijM paieajp ussq aABg isnuj eaisB b u| auui auies agi le pesn aq oi BuioB sjb iBgi sajnpid
agi i|B iBgi mouh oi pepoduj! Ajsa si ii isjg ip susjPd jnojoo egi giiM uasogo sjnojOD agi
0JB asagj. uasjos uo sjnojoo luajauip ggj Apjdsip Ajsnoaupiinuiis oi siqissod aq Ape him
II 'psiuaouoo ajp ssojbB se je| sa gaAaAsoig 'sjnpjd Aub |0 sispq agi si siisiBd jro|oo agx

ssHaied jno|Oo zx

•(opsj) aouBApB 01 a3Bds)|3eg+u!gs 'uSMi
pge (opun) ajnpid agi |0 uoiieajo agi ui gapq oB oi (jsiug aAoqB paoeid) Aag soedsifOBa
egi asn 'Buigiaujcs paiuiBd aAeg noA asuQ SJpq |ooi puB suosi jsgio ino Aji ubo hoa

•Aaj| (luooz) z am BuisssJd
Aq auop aq osib ubo sigi :paAeidsip si aBeiusojad ujooz sii Ajba oi ja||iu6eiu e giiM uoo| ue
•uagi -uo3| uad agi p igBu agi oi jpadde ajnpid egi p losdssj ui saiBuipjooo jaiu|0d agx

JBq jooi agi ui jeadde isnuj pgi
aSgcj agi 'ued igBu agi uo Bu|>(3iid Aq -jo auapd uibuj agi gjoji jnopo e jsgiia paps ueo
noA 'xoq sigi u| jBsddB Boiep s.uoipaps jnopo sgi S)|biu oi Asx (jnopo) o agi Buissajd
Aq eiiaied sgi uiojf jnopo AuB jo 'gsiM noA n -(sjnoioa AbjB p lueujoiu legi p) bBubj
s.jsq egi uigiiM jsgiie 'jnopo e psiss isjg 'Buiiuied pBis ox xoBp uj jpsddB |||m sjnpid ogx

JBq usd sgi ssn oi xoq sigi
p u03| igBjj jsddn sgi psps sepoui S(qB|ieAB sgi p suooi lusjepip agi BuiMogs Boieip b
uado 01U03! sigi go xsiio (jbq Bumop agi S| Sjgi) spp eajgi spidop BuuBadde uosi isji(agx

JBSpox uappig Buiaq uioj) Blixjom
Sib noA goigM uo auoz 6u||gied sgi
sngi BuiiusAOjd uomsod uaeiss Aue

IB II Bejp 01 spissod SI H 'uDigM gi|M gai agi oi jBq a|i|i siUH B giiM papiAOJO S| jeq poi og |
jQllpa agi le soub|d siapp v

dauj sigi uo Buixoip-apnop Aq joiips egi ssbsob pub '002*002 sb gons
•s|o*|d UI szis Aue p (—aasu \ sdeui) dBUj msu b sibsjo pue (pd'Aip sAjgoje sgi BuiiBoipui
•"uado \ ssiiajBd) iinepp Aq auapd jnopo agi pBO| sisai isii| egi |no Ajjbo oi 'asueisji joj

II you answer Accept and Ihe new palette is
activated, the system will ask you whether you wish to
adapt the maps previously loaded to the new palette.
II you do not want to do so, then close the loaded
maps, without saving Ihem previously (as they would
he incorrectly saved, with a colour palette dillereni
Irom theirs). In short;

D 'SlogBor

■ in order to adapt Ihe open map to Ihe active palette In Ihe environment, answer
Cancel to ihe question activate the new palette. II you are not saiislied with Ihe
performed adaptation, close the new map without saving It.

. In order to adapt the loaded maps to the palette ot the open map, answer Accept to
the question activate Ihe new palette and Accept to the question adapt the loaded
maps. II you are not sairsiied wllh the performed adaptation, close the previous maps
without saving ttiem.

• In order not to adapt any map to another palette. Iirst save and close Ihe loaded
maps in the desktop and then, open the new one. answering Accept to the question
activate the new palette.

Once you start a proiact, you must decide which colour palette you are going to use tor ii. II
II makes no dillerorice, then by defauli use the palette ol DIV Games Studio (div.pal).
Otherwise, you must use the palettes editor (palettes \ edit palette,,.). Once you have
created a new palette, it is advisable to save it in a disk's archive, as it can be recovered
Irom this archive il the palette is later modiliod or accidentally changed.

DIV Games Sludio contains a library wilh many graphics ready to create new games.
However, keep In mind lhai many of those graphics use dillereni palettes. Therefore, you
will have to adapt some of ihem to the palette ol others, m order to pui them together in a
game. The best option is, once your own palollo has been delined, to adapt the graphics ol
the library (the graphics that you wish to use in ilio game) to this palollo.

Ttie option palettes \ merge palettes... allows you lo create one palello Irom two, Including
Ihe mosi characteristic colours of both palelios in the resultant one. This is a very good
option to use graphics with several palettes, to create a mixed palette and then to adapt all
the graphics to it. It Is also possible to create a palolie from more than two, merging them in
pairs unlit only one is left

The palettes menu that allows us to access these and other options has been descnbed in
sec t ion 2 .3 o l t h i s book .

3.3 Ttansparent colour

From now on, many relerences will be made to the transparent colour. This is the first
colour of the palette. The colours In Ihe palette are always shown in order, in 16 lines, from
the uppermost line wilh colours ranging from 0 (left) lo IS (right), lo the lowest line wilh the
colours ranging Irom 240 to 255, Thus, the transparent colour is the upper lell Ohe in the
palette.

This colour is normally black and It Is the colour lhat all the pixels ol a map nave when they
are created. This tonality can be moditiad (in the palettes editor), but at Iirst, it is not
adv isab le to do so .

Page 68

69 sBsd

'jn0|03 P3133|3S
am ui luied o; sn moi|b hw As>i sim 'sjeq isocu u] 'Xes oi sj ;Egj. pJBoqXa>i aqi uBnojqi
pailoj|uo3 SI jeiujod eui uaq« 'uoiinq asnoui iiai aqi Xq paaBjdaj aq osie ueo jeqaseds agj.

luSij / qe| jsiuiod aAon d '0
uwop / dn jaiujod aAo^ v D

:sAe>|
6uiuO||Oj sq; jo sjosjns sqi qiM peAouj sq 0S|S ues jeiuiod agi 'peijntiaj s; siueujeAOuj ui
uo|8|9ejd u9«w 'euoE Buquied eqi qi inq 'esnoui am qSnojqi pauijojjed AiiBSiseq S! lOJiuoo

s>|JO«A AiiejeuaS ujej6ojd |uied aqi Moq smeidxa osje uoipas sim 'em!i siues am
IV oaquDsep a\ou ajB qsiqw spuBmaioo uomujoa)o sauas s SABq sjeq poi am iie isoiiJiv

s]ai)U09 3|seg be

maaiq anbedo m paiuiBd eq isniu Aam 'oiqdBjS e)0 spBd >|3eiq «,cqs
01 SI LLjB aqi qaqwi 'ajoiajaqj. 'saiUBB aqi ui paimed eq joab i,uOa\ jnopo luaJBdSuBJi aqj.

jBq |ooi em u! uEuj e|U!| e Buipidap uooj aqi Suitoeies Aq maeiq ibuiBup sii
UI jno|oo luejBdsuBJi jo sauoz eqi imBd oi luejSojd Smiuisd eqi asJO) oi aiqjssod si || mou
jeaddB lou op jnoioo luajBdsqeJl qi ijai ejew iBqi sauoz aqi Moq eAjesqo 01 aiqissod eq
lliM I! 'asnom am qiiM ii BqiAouj uQ (lesi! uo oiqdBJ6 aqi Adco oi pajaiua aq mvi joiipa aqx

'deoi
leuiBijo eqi oi (iwopuim deuj iweu aqi) paieajo uaaq seq isqi Ad03 aqi Bsjp 'Aheuh puv •

(jedBd|iBMaqioi«opu!«dBiij aqi Bejp)dBUi sjqi)o Ado3 Bsaieajopus joupa aqiitxa .
(seipoop jnoioo aujos) ij u| Brnqiaoios luied pue dsuj msu b aieajo •

:SM0||O} SB
SI qsjqw 'jno|03 iqajBdsqBJi aqi (o loaua aqi AjuaA oi ino paujBO aq uBo luamuadxe ejiiii v

(Jaqjoo iqBu jaMOi aqi p pqi) aio |0 ipejep Aq aiiapd aqi p oPS Jeqmnu
jnopo SI ifoeiq anbsdo Sjqi qaas eq m-vi Bmqiou 'esiAueqio 'S6 Aa>| g eqi Bqissaid Aq
paiqBiiqBjq aq A|snoiAajd isnm jnopo lueJBdsuBJi aqi '>|OB|q sjqi qt ppd oi luejedsuBJi |ou
PUB)(OB|q aq A||eaj isnuj leqi sopdeiB aqi p sauoz aqi lupd O) (aiiapd aqi q{ uoiiisod Aub
18 pe3B|d aq UBO leqi) jnopo hobiq b 'pqeq jaqp aqi uq aqo luaJBdsuBJi eqi aq tiiA\ leqi o
jnopo 'puBq aqp aqi uq aueiBd aqi u{ sjnopo >|0Bjq oMi SABq oi apBSiApe s) ii 'ejopjaqx

uibEb Aajj g aqi ssajd oi AjBssaoau
8| i! '>|3C|q 01 jnops peJCdsuBJi eqi aSqeqs oi '(seuoz lueJBdsuBJi jisqi as|u6ooej
01 epE aq oi) seqiiino popdejB eqi OAjesqo Aqeeio oi ;uo|SBP30 Aueui qo peuijoped
SI i|SBi spi AbjB eiBipeujjeiu! ue oi ipEiq ujojj seBuEqp jnops siqi 'Ae>| g eqi Buieeeid
uo 'osneoeq jnopo luojEdsqeji eqi espBooej oi epissod si ii 'joiipe ppdeiS eqi ui

•jnopo >|seui jo jnopa punojBuoeq jnopo siqi aujBu os|e seiimin jeqio

•qjeqi Duiuppoo sdBixi aqi se qons 'pajenbs aq pinoqs soiqdBjB aqi
lie jnopo luaJEdsuBJi b incqiiM 'jnopo siqi q| pepied eJE anbedo pu aje pq; sojqdejB aqi
p sauoz eqi 'Abs oi si pqi auieS aqj u| so|qdej6 eqi 6u|iu(Ed uo jeadde i.uom jnopo
Sjqi (u| 1)8| JO) UI paiLiBd s|ax|d .smqdBjS eqi leqi pe) eqi ujoj) siuais lusjedsuBJi ameu eqi

Control through keyboard is performed pixel by pixel. To move faster, It Is necessary to
press the Shift key simultaneously. If the Num. Lock key of the keypad Is activated, the
cursors will move the pointer 8 by 8 pixels. To move rt one by one pixel, this key must be
d i s a b l e d .

In most bars. It is possible to take a colour from the picture If the Shift key Is held
pressed while the spacebar Is pressed or the left mouse button Is clicked on a pixel of the
edited map.

Besides the mouse, the W / S keys may be used to choose a lighter or darker colour of the
selected range. Iktoreover, If the Shift key is held pressed, then the range appearing In the
bar (Instead of the colour) will be chosen. These tasks can also be performed If Control Is
held pressed while the cursors are used, selecting the colour of the range with the left or
right arrow keys and the range, with the up or down arrow keys.

To select the transparent colour momentaneously. It Is possible to press the 0 (zero) key.
II later this key Is pressed again, the previous colour will be restored. It can also be done by
clicking on the black rectangle placed just before the colours range of the bar (to its left).

To undo actions, we have already mentioned the Backspace key, which Is used together
with Shift to redo the undone actions. The undo Icon appears as an arrow to the left, next
to the magnifier Icon (the edit zoom).

The use of the Z key to vary the zoom percentage was also mentioned (It Is necessary to
point the zone to be expanded with the mouse when this key Is pressed). When the
maps are edited expanded, they won't fit on screen on many occasions. To move through
the complete map, it is simply necessary to move the mouse towards the edge of the
s c r e e n .

The screen's shift can be blocked by clicking on the coordinates of the tool bar. They will
change their light gray colour for a dark gray, blocking the shift of the expanded zone. To
unblock the shift. It Is necessary to click on the coordinates again.

The dialog boxes displayed from the tool bars can be exited In many ways:

t By closing the txjx (with Its upper left button).
• By pressing the ESC key.
• By pressing the left mouse button.
• By selecting the Icon that activated It again.
• By clicking on the edited map.

A summary with all the available keys In the graphic editor can be found In Appendix 0 of
t h i s b o o k .

3 . 5 G e n e r i c i c o n s

As il has been already mentioned, the lirsi icon ol all the tool bars is that indicating the
painting mode. Each bar corresponds with a painting mode and Ihorefore, has its own initial
icon. The bars are individually descnbed in chapter 4. To access these tsars, together with
clicking on the first icon, the lunction lieys can also be used. The list ol keys, as weil as a
summary of the tool bars lunction is now shown.

F2: Pen. lor hand drawing sketches and outlines.
F3: Straight lines, to create diagrams and geometric figures.
F4: Muifiiine. variation of the previous bar for strirtged lines.
F5: Bdzler curves, to trace outlines and curved lines.
F6: Multlcurve. vahallon ol Ihe previous bar for stringed curves.
F7: Rectangles, lo create squared or rectangular boxes or frames
F8: Circles, lo create circumferences, circles or ellipses.
F9 Spray, tool for retouching and artistic tinish.
F10: Filling, to fill several typos of surfaces.
F11: Blocks edit, tool to manage graphic t^ocks.
F12: Undo, specific bar to do and undo actions.
Shiltf F1: Text, to write texts mside the edited maps.
Shllt*F2. Bar to position Control points inside the maps.
Sh1ft*F3: Dotting bar. to edit iiiile graphics accuralety

The Colour sampler is another of the icons shared by many bars, which normally appears
nllor the coipurs range and which, on clicking on it, momontanoously leads to another Mtlc
bar used to select a map colour.

m 0
\ '

i i '

A;
Painting Toots

The coordinates, tne magnifioi and trie colour
on which Ihe mouse pointer is placed in the
map are shown in the sampler bar. This colour
wiii be taken to paint on ciicking on the map.
automalicaiiy returning to the previous bar.

Cokxif Samptef

e e e
e e H e

Keep In mind that, lo choose a map colour, it is also possible to click on it by holding the
Shift key pressed at the same time.

A great number of bars show the percentage icon alter the colour sampler. The amount ol
ink added to the piclure on painting is contrt^ied through this icon.

A dialog box with a ruler will appear on clicking on this
icon, it is necessary to click on this luier lo establish
the percentage. A percentage equal to I00°e (the value
of mosi bars, by default) will imply to paint ct in
completely solid colours. That is lo say. they won't mix
up with the previous picture. Pefcentage Setectkm

Very good results may be obtained if you ieam how lo use this technique properly, as il
allows us to retouch a part of a graphic (for instance, with the pen bar) by adding a small
quantity ol one colour. It is also useful to paint with a low percentage of black colour lo get
parts ol the piclure gradually darker, or with while colour lo get them lighter.

Page 7i

The icons that can appear (oliowirg these two icons in the ditferent tool bars are normaiiy
mode icons, which otter several ways to use this tool. Generally, on using them a new
dialog is displayed with new icons, each of them showing a different way to use this tool.

V/hen a second pair oi coordinates appears In the right part of a bar. they will normally
indicate Ifte width and height o) the object that Is being painted with the tool. Thus. A is
possible to perform precise measurements.

3,6 Colour ranges

To access the dialog box labeled Creation and selection ot colours range described now,
it is necessary to press the C key or to click with the left mouse button on the selected
mouse in the bat (A is the rectangle located jusl alter the undo icon and twiore the rectangle
of the transparent colour), A colours

range is simply a sequence of
colours of the palstte used to paint in
d i f f e r e n t s h a d e s o f a c o l o u r (a
sequence ol greys, reds, etc.).

A rather big box will appear with
many colours. To return to the
picture, A is necessary either to press
the C key or to click on the selected
colour again. This box is split into
three big zones: the colour palette
(upper le f t par t) , the range edi tor
(lower part) and the l ist of colour
ranges (upper right part).

T h e c o l o u r p a l e t t e
This section is simply used to select colours of the paletfe. by clicking on if. Information
about the selected colour or about the colour on which the mouse is placed, if A is inside the
palette, appears to the ngnt.

Information deals with the colour number in decimal, in hexadecimal, a colour sample and
the percentages cf red, green and blue comprising the colour,

from this box It is not possible to modify the palette, as this task can only be performed
from the palettes menu, outside the graphic editor.

T h e r a n g e e d i t o r

Up to 16 different cdour ranges may be defined for a palette. The selected range appears in
the too! bar and can be edi t wi th this tool .

Note: The ranges editor does not modify the colours ol the palette, but A only
arranges them again, In order to create with them colours' sequences useful to paint.

An exact copy of the range located in the tool bar appears to the left and three rectangular
buttons that change their value when pressed appear to the nght. having the following
f u n c t i o n s :

Colour Range Selection

Page 72

ei sBed

•siHdBiB eyi opjsino iu|Bd i,uo« siooi ;u!Bd ogi se 'oumno sii episuj
eulclesH orydBjE ©m jujEd oi ©iQissod s; i| 'ajojajeiji ji uo luied oi ©ipissod lou sj ii ispi
OS 'p0ioeiojd ©q i|(m jno]05 Hseiq opi uay; 'jaiuaa agi le ajnpjd b miw pue >i3eiq ui pojuiBd
punoj6>(3Eq si! |0 isouJ ui!« dEiu E uj SfSEui B SB pauijap sj jno|oo s|OEiq am)i 'oooBisui joj

luiBd 01 ©iqissod aq i.uom ii qoiqw jqao sjhoiod
ansied am jo les b Bupoaios Aq paouopad ©q ubo lEqi sjSBi e 'paiiipouj oq lou isnuj leqi
ajnioid aqi (o spBd loaiojd oi pasn si ii enbjuqdai paouSApE ub S| s>(S8uj jnotop |0 ©sn ©qj.

sij«BU> Jno|09 |o nn rc

psxjd JO eiqeiipg si l| jaqiaqM puB uojiiujiap |0 apoui gjnojoa
(0 jaqiunu :s3i)S!J8i0CJEq3 sii Buiji)ap 'aBupj qsB© BuwoijO) UMOqs ojb sanjCA oojqi

jBq |00| aqi puB joiip© seSuEJ aui ui sjEoddo csjG
II afiuBj sjnojoo paioEjas em S| qsjUM seiBsipui wojjb airgw iieius b rem peojiou ©q ub3 ii

luied 0) japjo ui lusmoiii qaea re peissjsjui
8| jasn am gaiqu u| oSubj jnojop ogi iseias Ajpsjip oi sn s/aoue ii se 'jnjesn Ajoa s{ isii sjgj.
•xoq aoreip agi (O pad igBiJ joddn am u| jBBddB psjuep eg ueo rem soBubj jnopo 9t egi

saouBj jnojOp to i«ii egi

'eAigsjs 8ig) u| poACS os|b si ii u|
pasn seSuBJ jnoio3 am inoqc uoiremjo|ui em '©Aigpjs ue u| pbaes si eiieiBd egt uogM isoi
Buieq A||eiuop|33e mojj || lusAOJd o) ii x|| oi eiqesiApe si i| pauiiep uaoq sag sBpej a e3uo

peuijapAjiBSiieuJoine
sjrojoo cAg AjOAa uaaMiaq soBubj aieipamjeiui am joj gojBas oi maisAs egi Aq
pasn ©JB Aagj. sjnoioo ssai aunap uba© Aagi regi oswojd egi giw 'euo snojABjd egi
01 |B3||uapi AjiBsipeid ojb sapom omi isej esegi sjno|03 igBia jo jnoj Aj©Ae 1103 •

•sjnoioo paselpB omi sii jo aBejeAB
egi 01 isesop euaied egi |0 jno|03 agi gim maisAs egi Aq pauiisp eq iiim sjnoios
8iE|peuijaig| agj. omi Ajsas |o reo jnoioo euo eujiep oi epissod aq A|uo him h legi
osiAOJd em gi|M 'euo snoiAeid egi 01 jbhujis S] epoui sigj. sjnojOo omi AieAe iip3 •

'sBubj aui p uoiijsod
gsB© re jarei megi 6uiu6|sse pue ©uaied egi uiojj luagi Buipaies Aq 'psuuep
aq AijEnpiAiPuj ubo sjnojOD s.eCuBj egi p goea '©pom sigi u| 'jnopo AieA© iip3 •

'©lieied egi moj| uegei A||E|iuenbes eie sjrojos jagp egi
eiigM 'p3u||©p sj aBuBJ egi p jnopo isju egi 'epom S|gi u| eiiajEd agi moj(igBiejis •

:sMojto| SE aJB sepom eiqEjiBAE
egi eBuEJ egi euijep oi sj mre agi gspM ui ©pom agi sauipp (jeMOi) uognq isei egi •

'SjnojOo aEuBj agi gsiiqeise 01 pasn sje suooi esegi '||
UI jeeddB MOije dn AbjS e gg/n suosj iiems pjeAes jo auo 'eiqeiipe si eBuej egi uagM
'©IBIS tuajjno si| uj ujemaj oi BuioB S| jo psijipom eq 01 SupB 5| eBuej agi jegiagM 'Aes
01 s| regi 'paxfi JO epeiipa S| aBuEj ©gi jegpgM saunep (igBg jaddn) auo puosas egi •

sjnopo zt JO 91 '8 uaeMiaq peBuegs eq
UBO regi '©Buej egi Aq pesudmoa sjnoioo p jeqmnu egi seu||©p (gei jaddn) euo isjg agi •

fL 96ed

/;ijeuijou luieo oi anuiiuos oi jsdjo ui mo Hseui am axei oi ia6jo| i uoq pauipouj
Suiaq luoj) it luaASjC oi Ba>tSEui uaaq seg jnoioo sigl se 'punoj6)oeq >i3e|q agi isuibSe
paAeidsio lou si u 'oigdBJD agi Suwouj uo 'Mog aotiou dim noA sOais asagl modoj noA (i

iiasii uo sigaajS am Adoo
01JBBJO UI 'dBUj ieui6iJ0 am Suiuieiuoo mobuim am oi paisojo Aiiuaoej Adoa agi BejQ •

jadcdiiEM

am 01 If 5ui56ejp 'dEuj agi (o Ados e aicojo pue 3S3 Bufssajd Aq joiipa agi 11x3 •
'II apig 01 (J0UJO3 gai jaddn agi u| 'eiiaiod agi |0 jnojoo

isjij egil jnoi03 luajedsueii agi loeias pue n Suissajd Aq BojEip s>iselii agi ssaoov •
deiu agi |o jaiuas egl le sinoioo leiaASs

Buisn 'Buigiaujos lujed pue (6J Buisseid Aq passaooe si goigM) 1001 Aejds am waias
(deu; eui uo 6uixoiio-aiqnop Aq) joppa egi jeiua •{—Mau \ sdeiu) deuj wau e saieajo •

ajdujexa leogaeja v

'(OoieiP agi u| leap uounq egi uo (iup|0||0
'uegi pue Aait w agi Buisseid Aq euop aq ues gsigM) mo uagei aq isiji isnuj sxseiu

am asneoeq paujeidxa si legi 'SujgiOM Apadojd lou si uieiBoid lumd agi Mog apjiou
01 'jaiei pue «leBioi oi 'sinoioa auios pensBiu SuiAeg jaga 'epBiduouiuioo s| 11; eioN

Boietp sigi ui

smo|03 agi iie paiesun 01 'sojom jogio ui mo sgsem pauuep agi agei 01 pasn S| 11 'leao

AijsnpiAipui isai agi Buipaias uegi lagiei uoimd Sjui Bufsseid Aq uoiioaiss agi asj8Aaj
01 'uagi puB jnojoo Sjgi loaias 01 JOfsea aq dI'a II 'jnojOP auo ui Ajuo luied 01 Sj tuje agi
aouaisui J0| '|i 'sjnojoa s.auejsd agi 110 |0 uojioejas)0 eiBis agi moaui 01 pasn sj 11 'uaAUj

:Suoi|3un| BuiMOijO) agi ijipni Bojeip
sigi JO ped jawoi am ui paieooj suounq omi agi

{uado Sj Sojetp
sifSBUj aui ajigM) deui pagpa agi uo Bujipip
Aq smoioo (>|shiu) peies 01 aiqissod osib si ii

deuj ogi ui |ooi Aue giw |u|Cd
oi oiqissod aq i,uom i| 'papajas aie sinojoo agi i|b
II dBLU agi u| mopo sigi uo luiBd 01 aiqissod lou si
11 legi UBBUJ ii|M jnopo e jo jaiuaa agi le Buueadde
eienbs eimi v uoimq asnom ipi agi giiM
agaiEd agi uo Su|i|3i|o Aq peioaiesun pue papaias
aq UB3 pagSBiu aq 01 paujie sjncgos agi 'ued
jaMOi agi ui Buueadde suounq omi gi|M 'paAe|ds|p
aq i|iM $jnoio3 s.aiiaied agi iie Buiuieiuoa Boieip v

•(uoiinq asroui legio agi gifM inq 'saBuej inoi03 jo Boieip agi
aiBAipB 01 SB aujes agi) uoivuitap susboj |0 BoiEip agi ssaooe 01 jepjo u| 'jaini agi jo jnoi03
papaias egi uo uounq asnoui igBp agi gifw gotp 01 jo Aag ̂ agi ssaid 01 Ajessaaau si 11

ooiff'C

ill

CHAPTER 4: The Graphic Editor.

This chapter describes the specific functions of every painting tool bar and some of the
techniques that can be used to make some tasirs easier or to obtain better results with this
graphic editor.

II is advisable to read this chapter with the computer before you. in order to practice the
techniques descnbed m it at the same lime

4.1 Dotting and pen bar*

These are the two basic painting toois to initiate the pictures or to define the small details.

I The dotting bar is used to put and remove pixels in a map. To remove pixelsmeans to put Ihem in transparent colour again. This mode Is normally used to
create very little details of graphics accurateiy.

Dewng |, jj normally used by controlling iho pointer with ihe keyboard (using one of the
""" two sets ol Keys, cursors or OA,OP). The keyboard Is also used to select colours
(with control and the cursors, or with W,S if the seoono set ol keys Is used) and to put and
remove pixels (space bar). The Shlft«SpBce bar is also normaliy used to lake a colour ol
Ihe picture itself.

This way to paint pixel by pixel allows us to create graphics with great. Precisely lor that
reason. Ihe dotiing bar. instead ol ihe pen bar, is used, as the lirsi one laciiiiaies to remove
a pixel by clicking again on the same posiiion, when the pixel has been put incorrectly or
mistakenly.

T̂he pen bar is less complicated and is normally used with the mouse. It is thebasic Daintmg tool par excellence, and it is used to initiate most ol the pictures or
sketches. Better results will bo oblainad II you work with a very high zoom
percentage, as it will be easier to perceive the details in this way.

P e n I c o n

It is not possible to vary the stroke thickness, which always equals one pixel.
Thicker strokes ol other tools are only useful to paint doodles instead ol pictures, creating
the negative habit of painting quickly and bad.

The Percentage icon, which allows us lo define the ink quantity, appears in this
bar. Good results will easily be obtained with a high zoom percentage, one oixei
stroke and a low ink percentage. The percentage initially equals 100°«. while the
picture is defined, using lower percentages lor the Imal finish.

Perteniage
I c o n

There is another utility available Ihrough the pen bar: to smooth. This is retained by holding
the D key pressed while the picture Is painted with the pen. In this mode the user won't

Page 76

palm in the selected colour (no matter which one it is), but the map colours will gradually
be modified to mitigate the sudden colour changes and to prevent some pixels from
excessively standing out.

Don't try to start a picture with low ink percentages, smooths, sprays, etc. These artistic
finishes must be left tor the end. At the beginning, the picture's outlines and sections must
be defined with solid and clean strokes, starting with the colouring, bright, etc. once they
h a v e b e e n r e t o u c h e d .

To retouch outlines until they look good, it is normally necessary to make several ailompis,
clearing the inaccurate strokes (by painting wnlh the background colour or using the undo
command), to correct them on time.

4 , 2 B a r s f o r t i n e s a n d m u t t l l f n e s

These two bars allow us to draw straight lines and they are used to define the most
geometnc parts of the initial sketches or very detailed finishes.

The colour must first be selected, double-clicking later on bolh ends of the line.
When the first end has t>een defined, (he line will be seen in the way it will be
drawn when the second end is defined To cancel the task at that moment, press
the r ight mouse button. To cancel the l ine once the two ends have been
defined, use the undo Icon (or the Backspace Key).

To the right ol these bars, two numenc values appear: the width of the drawn line (higher)
and iis height (lower). These values only appear when the first end of ihe line has been
defined, to help us to measure. The cursors are normally used to position the line ends for
Ihe precise adjustments.

I c o n

These bars contain all the conventional icons, among them that of percentage which, in this
case, is only used to perform specific touches,

T̂he multiline bar is practically identical to Ihe previous one, with tne proviso lhatt h e f o r m e r a l l o w s u s t o d r a w s e v e r a l i n t e r w o v e n l i n e s . O r v c e t h e l a s t e n d h a s
been delined. the right mouse button must be pressed to finish Ihe mufliline.

M u U ' l t n e ?

I c o n

finally, it is also possible to use smooth with the D key. Smooth can be used lor many effects:
for Instance. 10 paint anti-aliasmg lines, as shown in the following practical exercise:

• Create a new map. Enter the editor, choose the lines tool (F3| and selects the while
c o l o u r .

• Diaw a line irom ine (10.10) coorCinatos to the (66,47) coordinates: use the cursors to
adjust tne coordinates. You will see how the line has an aliasing appearance (iho pixels
are seen a lot).

• Now draw a second line from the (10,9) coordinates to the (66,46) coordinates (one pixel
upper). Gut. on dalining the second end, hold the 0 key pressed.

• Perform the same task one pixel lower than Ihe original line. Vou will see how, on
creating two smoothed lines above and below the original one, you have succeeded in
hiding Its aliasing appearance .

Pago 77

43 Bars for curvst and mult lcurves

The curves bars allow us to accurately do curved strokes in the initial sketches, without
requmng a steady hand (unlike drawing with a pen).

EThe use ol the curves bar is sintilar to that of the lines bar. with the proviso thatthe former creates bdzler curves instead ol straight lines. The initial and final
ends ol the curve must first bo created (the same as it happens regarding straight

Curves lines). Then, two Other points must be defined The first one, indicating the
rcon steepness ol the curve in the initial end (to which the curve goes up) but the

farther this point goes from the initial end. the sharper will the steepness with
which the curve emerges from this end be. The second one will specify the final end's
steepness in a similar way. The cun/e wili be defined after the left mouse button has been
pressed four times.

The multlcurves bar works in a way slightly different way. It is very useful when
If comes to defining curved outlines of a graphic. A complex curve is defined by
sections, with splines.

The first section will always be defined as a straight line, establishing its initial
and final ends, Then, different points will be defined along the trajectory of the
outline. They will be linked by the computer, automatically creating a continuous
c u r v e .

It is very important to use the + and - keys of the keypad to vary the strength with which
the cun/e emerges from each poml of the trajectory. That is to say. the destination point and
the initial steepness ol the section must bo established lor each new section, if the intensity
is reduced to the minimum, tnis tool will practically work In a way similar to the multilines bar.

These two curves bars also allow us to adjust the ink percentage and use the smooth, as it
happens regarding the previous bars.

4.4 Bars of rectangles and circles

These bars allow us to paint Ihe most basic geometric figures. They can be used as colour
filters, among many other applications.

The rectangles bar is used In a way similar to lha lines bar. selecting the colour
first and dolinmg the two corners ol ihe rectangle by double-clicking the left
mouse button on the map. The width and height in pixels of Ihe rectangle that is
being defined appear to the right of the bar.

flecrangWs
/ c o n

A new icon, placed to the left ol the rectangle's size, allows us lo select two modes
with which this bar pamts rectangles or solid boxes (by default, boxes will be
painted).

To paint squares (or squared boxes), it Is necessary to noid the Control key
pressed while the second end is defined. Thus. Ihe width and height will be forced
lo be equal.

M a x
Se lec io r iRac iang /es)

Page 78

This bar also allows us to establish the ink percentage. When solid boxes are painted with
an mk percentage less than 100% against a Background picture, the eKect ot applying a
colour filter on that picture will be obtained. On defining the box, it is possible to vary the
ink percentage (by clicking on the percentage icon) until the desired etfecl is reached.

The circles bar works in a way similar to the rectangles bar. as it also allows us
to paint circles (tilled) oi circumferences (not tilled), apply fitters with the
percentage, etc. The circles are dolined with two radii (horizontal and vertical,
lespociively), creating kinds ot ellipses that are but flalioned circles. To cioato
perfect circles, with similar radii, it Is necessary to hold the key Control prossod.
as It tiappens regarding the rccianglos.

Besides choosing between circles or circumterences. the mode selector icon
allows us to define them in two ways:

• From corner to corner, detining the upper left cornet and the lower nght corner
of the box tha t embraces the c i rc le ,

• From center lo the radius, defining the circle's conlral poml and then, its radius
length (or its radii length, it Control is not pressed).

The mode selector icons of both bars appear in a little dialog that is displayed from
fhe toot bar, arxl their pictures are self-explanatory.

Vtode Selector tOrcies)

4.S Spray bar

This tool bar afiows us to use the computer version of a paint spray (an aerosol or ditfuser) to
cany out artistic arxl rreguiar finishes. Its use Is almost as easy as ttiai of a reeu spray. It is
necessary to seiea the colour and dick on the map at the same lime that the pointer Is moved,

11 IS essential to use the percentage icon of this bar to adjust the paint quantity
expelled trom the spray. By default, the opacity percentage is adjusted at 25%,
To obtain precise finishes, it is better to use very low percentages (even less than
25%), Thus, it is possible to retouch the picture little by little.

Spray Icon

A new icon appears In the right end of this bar. This icon is used to adjust the
spray's Stroke thickness, which is now necessary. By clicking on this icon, a new
dialog will be displayed, showing the available thickness: select one by clicking on
It.

As usual, bolter results wili bo obtained with a high zoom percentage (x4 or x8)
with a small spray and with a low ink percentage, it is also important to learn how
to use the colour masks (described In section 3,7) together with the spray in order
to keep inside the zones on which the aim is to apply the effect.

The spray has several interesting applications, related to retouching rather than to
painting. For instance, by using the spray on a graphic while the D key is held
pressed, it is possible to smooth the graphic irregularly.

7 7 i « , k n 8 s s
Se lec t i on

Page 79

Another example: it Is possible to apply irregular bright with the spray on graphics already
painted, by selecting the white or black colour (depending on whether the user wishes light
or shade) and adjusting the ink percentage to the minimum.

This is one ol the most useful bars of the graphic editor if you learn how to use it properly:
thus, It requires practice. Its appearance is similar to that ol the previous bars, but its
application is quite different.

The fllting bar is used to fill the parts of the pictures with colours. It works in tour
ways, that must bo distinguished. They are activated by clicking on the icon
placed to the right of the bar and selecting the filling mode with one of the icons
that are displayed.

rjling Icon

C o n v e n t i o n a l t l l l l r t g

The first mode (corresponding with the icon solected by default) Is shared by most of the
graphic tools. One colour is selected and a part of the picture is clicked. With the
selected colour, ihe program will pami ail the pixels of the picture whose colour is
the same as that of ihe pixel that has been clicked on and whicn are attached or
joined to it.

C o n v e n l o n a l

Filling Icon

Example: A test can be carried out In a new map. painhng an irregular, closed outline
with the pen tool, selecting a tilling colour and clicking within the outline of this filling
mode. It the outline is closed, its Inside will become filled with Ihe selected colour. The
same operation can also be done regarding the external part of the map.

This tool is used to colour sketches. When the filling is going to be used, care must be taken
to keep all Ihe sections to be filled closed since, if there is any hole or fissure in its outline,
the tilling will leave to Ihe external part ol the section.

D i a g o n a l fl l i l n a

This mode is similar to Ihe previous one, but with an important dilterence. In the
conventional tilling, when the pixels attached to (he original one (to Ihe pixel m
which the fiiiing starts] are selected, only the pixels irom which it Is possible to
reach the original pixel are taken into account, without passing through a pixel

Diagonal 8 ditlerenl colour, and with individual movemenis in straight line (passing
FHimg Icon from one pixel to the next one by one ol me lour sides)

This tilling mode considers attached pixels those of the same colour united by a diagonal,
as well as those united by one side.

■

Example: In a new map, paint a square In any colour with Ihe rectangles tool (only the
edge, not filled with colour). In Ihe same colour, paint a circumference (not Mied) inside
the square. Now select another colour with this filling mode and click cn Ihe
circumference's inner part. You will see how the filling has left it by Ihe comers of (he
drcumference (by the diagonals) but not of the square (as it can not be left by any side
or diagonal of any pixel).

Page 80

The usefulness of this filling mode iles on the possibility of changing the colour of pixel line
graphics, as they deal with pixels attai^d by sides as well as by diagonals, and the
conventional filling couid not go through them.

Example: In a new map, paint any dootile with the pen tool {in a single colour). Now
select anottier colour ai>d, with this filfing mode, dick on a pixel of the doodle: you will
see how it is filled. You can carry out the same test with the conventional filling mode,
notidng how. in this case, only one of the segments shaping the doodle is iiiled (as the
conventional filling doesn't leave by the diagonals).

F i l l i n g t o a l i m i t
The third filling mode is the most powerful one. but not il^e most useful one.
Instead of tilling a colour win another one lliXe the two previous modes), it tills
with one colour all the colours it lirrds. until it reaches an edge of the same
c o l o u r .

Filling To A
Umit Icon

Example: In a map with several pictures, select a colour not used by them (purple, light
green, etc.) and. on them, paint a closed outline with the pen. leaving a part of the
pictures Inside the outline and another part outside. Finatly, with the same colour select
this filling mode and click on within the outline. The inner outline will be filled, no matter
the pictures contained In it.

It several graphics are painted against a black background map. this filling mode is selected
(with the black colour of the selected background) arrd one of the graphics is clicked on.
being deleted. It happens because the program has been tilling with the black colour until it
has lound an edge of the same colour (the graphic's exteiior).

F i l l i n g w i t h a g r a d i e n t
It Is the tilling mode most esteemed by the giaphic amst and. at the same lirne.
one ot the most difficult to find in other panting programs. It requires technical
Skill, and ternlic results may ite obtained with it.

In ihis mode, a section is filled with a colour with a colours' gradient of the
selected range in the tool bar (explanation about how to define and select
these ranges was included In section 3.6) Lighter or darker colours of the
range will be used, depending on the llglttness of the colours delimiting
t h e fi l l e d s e c t i o n .

Filing Wiin
A Gradien i
I c o n

Example: In a new map, select a umfixm colours' range (tor instance, any of those
defined in the OIV's palette tiy defatdl). Now paint a circumference (and not a filled
circle) with one of the darker colours of the range, about 50 by 50 pixels (not very big)
and. wi^in It. paint a small circle (filled) with the lightest colour of the range. FInaJly,
select this filling mods (with the range of colours in the tool bar) and click on between
t h e c i r c l e a n d t h e c i r c u m f e r e n c e .

Page 81

A new tool bar will appear wnri two icons: a sngle arrow and a double arrow. You must
click on one of tfiese two icons m order to start the gradient The single arrow advances a
step and the doubte one. several. When you are satisfied with the result, press the right
mouse button to go back to the lining bar.

It Is advisable to carry out several tests. liMing in ditterent ways, to observe the results that
can be obtained. Take into account that the gradient allows us to have light and dark colours
In the outline ol the tilled zone. What is realty achieved with this mode is to fill a section with
the average ol the colours delming its outline, taking the average ol its lightness.

The bigger the zone to bo filled is, the longer the etioct will take. Therelore. you must
try to divide Ihe big zones into small ones. il possible.

Not always are better results obtained Ihe longer the gradient is being applied. Indeed, on
many occasions when it is excessively applied, the outlines ol the section stand out too
m u c h T h u s , t h e r e s u l t l o o k s w o r s e .

There are not many lixed rules to Obtain good results with gradients. To a large extent, good
results depend on unltormlty. numtter ol colours of the range (it is belter to use 32 colour
ranges, il possible) and the section to be tilled. Practicing with this tool is indispensable lo
mas te r i t .

Note: The bar of blocks edit descnbed next can also be used to carry out other very
effective types of colour filling.

4 . 7 B l o c k s e d i t b a r

This is the main and most important bar of the graphic editor. It Is mainly used to select
zones ol the picture and allows us to access other tool bars lo perform different tasks with
t h e s e z o n e s .

It is the graphic tool to cut and paste. But it can be used for other tasks such as
to rotate, scale, lighten, darken, soften, invert, etc.

The first action lo perform will always be lo select the zone wilh which Ihe aim
Block is to work. In Ihe r ight pad Of Ihe l»r. ah icon depic t ing a dot ted square.
Edit Icon indicates the mode in which this selection Is going to be performed. By clicking

on this icon, a dialog with six icons will appear m the nght part ol the t>ar. These
Six icons indicate the possible modes to select a zone of a graphic

Learning to select parts ol the maps in these six modes will bo very
ftelplul to gam skill to work with tl>e graphic editor. Therefoie. the
way to select zones in each one of these rnodes will be now
descnbed. The tasks that can be performed with these zones once
selected will be explained later. You can try out a.1 these modes on
a map with some pictures. Once the zone has I>een selected with a
mode, press the ESC key to try out to select with another mode. eiock Selection

Page S2

B o x s e l e c l i o n
This is the easiest way to select a zone ol the edited map. It deals with tagging
a simple t)Ox (or rectangle) of the map. To do so, it is necessary to click on two
of I t s ends w i th the le f t mouse bu t ton .

Block Once the initial box has been defined, it can be adjusted by clicking near its
Seleclion corners to place it in a new position, or by clicking near the central point of one
Icon of Its four sides to increase or reduce the box by this side.

F i l l l n a s e l e c t i o n

QThls selection is very versatile. It allows us to select a zone of a map byselecting a set of colours from one or several points. It is necessary either to
click several times on the zone to be selected, or to move the mouse pointer
through it with the left mouse button pressed, until the entire zone is selected.

Filling
Selection In order to understand its performance well, practice is required. Once the zone
Icon of the map has been selected, it is possible to add more colours or zones. This

selection is not always appropriate but, on many occasions, it allows us to
select complex zones quickly. It is very similar to the magic wand of other
painting programs, as they name it.

If, for instance, a yellow pixel is clicked on, all the yellow pixels united to the original one will
be selected. Later, if a red pixel is clicked on, all the yellow or red pixels united to the
original ones (both the original red and yellow) will be selected. And so on.

Filling
Se lec t i on
I c o n

Polygonal
Se lec t i on
I c o n

Polyqonal̂ selection
The polygonal selection is very common in the painting programs. It deals with
selecting the zone by drawing its outline. It can be done in two ways: defining
several points (clicking with the left mouse button) around the zone that the
computer will unite with straight lines, or freehand drawing Its outline (moving
the pointer with the left button pressed).

The selection won't be completed until the outline is entirely closed. This can
also be done in two ways: reaching the initial point of the outline again, or
pressing the right mouse button (or the ESC key) for the computer to unite the
in i t ia l and fina l ends o f the out l ine .

Once the polygonal selection has been closed, it can not be modified. Therefore, if it has
been incorrectly defined, it will be necessary to press the right button (or the ESC key)
again to untag the zone and thus be able to define the selection again.

M u l l i b o x
Se lec t i on
I c o n

S e v e r a l b o x e s s e l e c t i o n

This is another quick mode to select parts of a map. First, a simple box is
defined, l ike in the first mode. But, once it has been defined, instead of
adjusting it, more boxes may be defined. The union of all the tagged boxes will
comprise the selected zone.

It is used to quickly tag pictures that can not be tagged with a simpie box
because a part of another picture that is not intended to be selected would be
included in it. For instance, a "L"-shaped graphic could easily be selected with
t w o b o x e s .

A u t o m a t i c
B o x

S e l e c t i o n

A u t o m a t i c b o x s e l e c t i o n
Ttiis mode of selection and the following one are the quickest modes. They can
only be used to select a picture inside a map with several separate pictures, it is
essential that the map's main background has a transparent colour. That is to
say, that the pixels externa! to the pictures are of the first palette's colour
(number 0).

:>eiecnon |f gpy pj^g| q(g picture of the map is clicked on. the minimum box containing
it (a rectangular zone containing this graphic) will be instantaneously selected.

The pictures must be separate enough one from other so that it is possible to define a box
which doesn't invade the adjacent graphics.

if, once the selection has been defined, the same picture is clicked on again, the box will
Increase one pixel by its four sides. That is to say, it will include the picture with one pixel
added margin. If it is clicked on once again, it will either recover its origins size, or increase
even more if it has found another part of the graphic near the origihai one.

On the contrary, if another picture of the map different from the one initially selected is
clicked on, the original one will be unselected and the new graphic will be selected.

A u t o m a t i c fi i i i n o s e l e c t i o n

This selection is similar to the previous one, but using filling techniques, instead
of boxes, if is as if, in the previously mentioned filling selection, ail the colours

L M I except the transparent one were preselected. That is to say, on clicking on a
picture's pixel all the pixels united to the original whose colour is not the

Automatic transparent one, wi l l be included.
Fining
Selaction This is a really powerful selection tool, it can make the work with the graphic

editor easier. Moreover, once the init ial selection has been defined, other
selections may be added to it. That is to say, as many pictures of the original map as
necessary can be selected.

C o n t r o l s c o m m o n t o a i l t h e s e l e c t i o n m o d e s
• Ail these selections, once defined, may be shifted through the screen if the Control key

is held pressed, clicking at the same time with the left mouse button on a position of
the edited map.

• To cancel any selection (untag It), it is simply necessary to press the right mouse
button or the ESC key. Then, the edit bar will be returned to its original state, being
possible to define the selection again Irom the beginning, change the selection mode,
or exit this tool bar.

• As long as a zone is selected, it is always possible to consult its width and height in the

right end of the edit bar.

• As long as the selection is being defined, it may be useful to vary the zoom percentage

by using the Z key, and thus observing better which are the pixels that are being
inc luded in i t .

O n c e t h e s e l e c t i o n h a s b e e n d e fi n e d
Three new icons will appear in the bar when a zone of the map is selected. These are the
move, effects and cut and paste to window icons, from right to left respectively.

Page 84

■jTiS^ The cut and paste to window Icon Is the easiest one ol the three. On clicking
on It, a new map window will be created In the desktop and the selected

[HI pasted In II. Inside the graphic editor, it will be only possible tonotice how the selection will be untagged but. on exiting It. the new map
Icon To Ci/l window will appear in the environment.

This Icon Is really useful, as It provides great floxibllliy in the operations with graphic blocks,
l o r i n s i n n c o :

• Copy sections from some maps to others. Taking the selection out to a new map and
then, Oragglng it to the map In which It Is Intended to be copleO.

• Edit graphics In bigger maps. For instance, creating a 20 by 20 pixel picture in a map
ol similar seize is not very comfortable. It Is easier to create this picture In a 200 by 200
pixel map thai allows us to have several copies, textures and samples of it. In order lo
take it to the 20 by 20 pixel map, when the picture is finished.

• Take a graphic or texture of a map out. The maps are normally used lo create many
pictures, not only one. Finally. In order to Include these graphics in the game, they will be
selected, cut and paste to individual maps and stored in a file FPG which can be loaded
in tie game.

I f t he move o r e f f ec t s I cons a re c l i c ked on . two new too l ba rs w i l l be accessed , t o move ano

copy the selected zone or to apply graphic effects, respectively. These two new bars are
n o w d e s c r i b e d .

M o v e t h e s e l e c t e d z o n e

Once a zone of a map has been selected, by clicking on the move icon
(depicting a hand on a little man), the bar to cut. copy and paste graphic blocks
w i l l b e a c c e s s e d .

I c o n T o

Move Note: This Is also the bar that appears when a map Is dragged to another
one in the environment's desktop.

a
In it. the selection will be moved ihrougn the map with the mouse pointer (a hand). To copy
the block to a new position. It Is necessary to press the left mouse button. To hide the
graphic of the mouse pointer (lo see the appearance of the block In a position, without the
hand above it) it is possible to press the H key.

The usual commands, such as the right mouse button, or the ESC key may be used to
r e t u r n I r o m t h i s b a r.

0(i r To Move

In this bar there are many new icons. The
zoom and undo icons are displayed after the
c o o r d i n a t e s , t i k e i n m o s t o f t h e b a r s ,
appearing the following ones to its right:

Opacity / Semlopaque. On clicking on this Icon. Ihero will toggle between two ways to copy
tha graphic: opaque (by default) or semlopaque. The only limit when It comes lo copying the
samlopaque graphic (with an effect ol transparency). Is that not always are the colours
necessary to create the elleci touno in the palette, thus using the closest ones.

Transparent colour This icon must be clicked to prevent the first colour ol the palette Irom
being sliown as transparent. That Is to say. when the aim is lo move the selection like a

Page 85

compact rectangular block, witti no nollows. It is used to prevent ttre copied block from being
mixed up with wnat there is in the map's background.

Horizontal flip. The third Icon will horizontally flip (mirror) the block. If it is clicked again, the
block will be reslored to its original position.

Vortical Hip. This icon is complementary to the previous one. On clicking on it, the graphic
will be vertically Hipped.

Angular rotation. On clicking on this Icon, a new bar used to rotate the block will appear, it
works easily. First, it is necessary to place the block in any position of the map and press
the left mouse button. Now. moving the mouse around Itie graphic. Its new angie wiil be
defined. The left mouse button must be pressed again to establish the angle, white ihe
right mouse buttort must be pressed to cancel the rotation.

Block scaled. This is the icon to change the size of the block (increasing or reducing it). It
works practically equal to the rotation icon. A new bar also appears. First, it is necessary to
click on Ihe map's position. Then, moving the mouse, the zoom percentage is selected to
establish it finally, by pressing again with the left Outtort in the map.

Dcloto original selection The last icon will delete the ongmal zone in the map. The colour
selected In the bar of blocks edit will be used to delete Therefore, if the aim is to delete
with the transparent colour, it rnust first be selected (before emenng the move bar). This
icon IS used to move a block. To access this bar. it is first necessary to select the zone, and
ihen, tho move Icon. Then, me block is deleted Irom its original position with this icon and
linatly, It is copied in the new position

All those icons are compatible. That is to soy. il is possible to use all ihe necessary effects
lo ob ta i n t he des i r ed resu l t .

II can bo noticed that the icon lo delete the original seleciion can be used as a filling loci,
selocling Ihe colour in the tool bar and the zor^e to be filled (with any of the selection mode)
so that, on clicking this icon, the selection is filled with Ihe chosen colour.

A p p l y e f f e c t s t o t h e s e l e c t l o r t
Once a zone of a map has been selected, by clicking on ine effects icon (with
the letter FX) Ihe tool Oar will be accessed to apply effects to the selected block.

The pixel line delimrting the selection will continue lo be seen in this bar. To
return Irom this bar. rt is also possible to use the right mouse button or the
ESC key.

E t e c i s B a r

New icons also appear in this bar from me undo
con (wtich must be used when, wfth an effect,
me desired lesuti is not obtained). These icons
are now descnbed. from left to nght:

Pass to Ihe selected range. All the colours ol the selected zone will be changed into the
colours ol Ihe range selected In the tool bar (edil bar). For that reason. Ihe colours' range
must bo selected before entering the eflecis bar. The change is made depending on the
levels ot brightness of tne selected pixels and the range's colours.
Reverse colours. Creates the negative of the selected zone, changing the light colours lor
t h e d a r k o n e s , a n d v i c e v e r s a .

Page 86

Create an edge First, it is necessary to select a graphic with, at least, a margin of one
pixel, and the colour with which tne edge is intended to be created. Then, on selecting this
icon, an edge of that colour will be created through all the graphic's outline.

Lighten Lightens all the selected pixels. That is to say. it slightly increments its lightness.
The only limitation are the available palette's colours.

Oorkon. This operation is opposite to ihe previous otre. it subtracts lightness from all the
pixels of the selected zone. If the zone is excessively lightened or darkened, it is necessary
to use Itio undo icon, and not the opposite operation as. in this case, the colours of the
original piciure would tne more and more impoverished.

Soften The icon located m the nghi end allows us to soften all the pixels of the selected
zone. It must be used lor effects in very specific zones as. if was applied on complete
pictures, they would look blurred. To avoid the excessive aliasing of some graphic's pixels. ii
Is belter to use the tools to soften specific zones (tools such as the pen or spray, by hoidrng
the 0 key pressed).

4 . B U n d o b a r

o n B O

U n d o
I c o n

The undo bar, that is accessed through the icon depicting a double arrow or
through the F12 key inside the editor, is used to undo or repeat all the actions
performed in the graphic editor.

The undo task can 5o per formed f rom pract ica l ly a i l the bars, wi lh the
Backspace Key. and to repeal actions, it is necessary to hold the Shift key
pressed while the same key is pressed.

Theielore. it is not nonnaily necessary to access this bar. However, it will be more
comfortable to do so when many actions must be undone as there are four buttons to undo
and repeat actions at two different speeds. The icons of this bar are seft-explanaiory: lefi
arrows are used to unOo and right arrows are used to repeal (redo).

U n d o B i i '

Once a picture has been created in a map. it is very
funny to use this bar to undo and repeat the work, as il
if was a video.

The undo memory establishes the limit of actions that can be recovered: it can be defined
in the configuration window (with the option system \ configuration.,.). By Oefault, the limit
IS 1080Kb, which will almost always be enough However, if you are working wilh very big
maps, il can bo advisable to increase this limit.

Important: When you are wotklrtg on several maps, il is vital to know that it will only be
possible to undo the actions dealing with the last map on which you have worked. For
instance, suppose that there are two maps artd you enter the first one to paint a cirtie
and then, the second orte to paint a square. You won't be able to undo the circle, unless
you first undo Ihe scuare. That Is to say, the actions can only be undone in the Inverted
order in which they have tieen done.

Page 87

4 . 9 Ta x t b a r

The te<i Dar is used to write texts m the maps with the lonts ot the archives
FNT, Of with those created with the Fohts geheraior (explained in the fonts
menu, section 2.5 of this ttook).

The appearance of this bat Is practically identical to the rest of tools. Any
activated window of letters font must exist in the environment to write with a
lont (a letter type) (see the foots menu).

If there Isn't any window of this type, it wilt be possible to write with the letters font used
by the programs editor (they can be selected in system \ configuration... among several
lont sizes for the editor). In order to write with the editor font, it is necessary first to select
the colour for the letters and. then, to cfick on any part of the map (with the left button) to
input the text. The ESC key or the right mouse button must be pressed, once the text has
been Input.

If there Is an activated font wirtdow. then rt will be used to write. In this case, the
transparent colour must be selected to wnte a text. If another different colour Is selected,
the font coloured m It will be shown. That Is to say. the first colour of the palette must be
se lec ted to use the na tu ra l co lours o t the fon t .

While the text Is Input, the cursor can be positioned by clicking on another different part ot
the map.

When a text js being Input, the previous character may be deleted with the Backspace key.
To go to the following line, press Ihe Enter key.

m
Toxl Icon

Note: This bar also has Ihe Ink percentage icon, which can be used to write translucehl
texts. Instead of opaque ones. 'Thus, attractive Idling effects can be obtained, on
writing on diflerent textures.

4.10 Control points bar

The last accessible tool bar rs not a pamiing bar. It Is used to define control
points inside the maps to tie used in the games, in order to locate some
positions of these maps

Conirof There are different applications that can be given to these points Inside the DIV
Points Icon programs.

This control points bar allows us to place up to 1000 dilforont pixels inside a graphic. Each
of ihem will bo idoniilied by a number (from 0 to 999).

To place one of these pixels, suffice wiit be to select
the pixel number with the left arrow and right arrow
icons and then, to click on the graphic.C o n l r o l P o i n i s B a r

To delete (unseiect) a control pomt. it is necessary to click on it In Ihe map once again

Pag«S9

The only conlioi poinl used by the system Is control point numtier 0 (the first one). This
point defines which is the virtual center of the graphic and It has many applications inside
the language.

When control point number 0 is not defined, the system will work as if the virtual center of
the graphic was its real center (a point placed hall the width and height of the graphic).

Note; Once the control points have been defined, lor them to have effect inside a
program, it will tie ttecessary either to save the map (archive MAP) or to Include it again
in the graphic file (archive FPG), by dragging It to this archive (depending on which
graphic Is loaded in trie program).

4 . 1 1 A n i m a t i o n s e d i t

The DIV graphic editor also allows us to create and edit animation sequences. The frames
sequence will be created In a scries ol maps all of tliem of a similar size In pixels. That is
to say, if the aim is to create an animation of 100 by tOO pixel size and 8 frames, the eight
100 by too pixel maps must first be created in the desktop.

The easiest way lo create several maps of the same size is to create the first one (with the
option maps t new...) and then, to drag it to the wallpaper several limes.

Then, the maps windows must be arranged. This is done
by simply supenmposing the windows on top each other.
The last one is placed In any pah ol ihe deskiop and, on it.
the penultimate, and so on. It is not advisable to put each
window exactly on top tne previous one. Rather, it must be
slightly displaced, for instance, a little to the right and
s o m e w h a t l o w e r .

Important; If there are more maps of the same size in
Ihe desktop (continuing the previous example, another
map of 100 ̂ 100 pixels thai must not be a part ol the
animation), tt>eir windows must be minimised lor
the program to know that they must not be Included In
the animation. Once the animation has been edited. It
will be possible lo maximise these maps again. Supenmposed wmrJows

The animairon can be edited once the windows have been pul in order. For that, onty ihe
upper window among those comprising the anlmalion must be edited (that is lo say. the
window that is over the rest) by double-clicking on II. And, once tne graphic editor has been
entered, it will be possible to pass to Ihe following frame by pressing the TAB key. and to
the previous one. with Ihe Shitt+TAB combination.

P r a c t i c a l e x a m p l e

Continuing with the same example, once the eight 100 by tOO pixel maps (all of them
empty, in black) tiave been created, they mil be put in order, as It has been explained (it

Page 89

doesn'l matter the order they are put in. as all of them are empty: thus, anyone can be (irsi
second the last one. etc.).

Then, double-click to edit the upper map (the last one that has been placed). Now. select
any colour and the pen tod. Oraw a b<9 t in the map (don't mind about the number's
appearance). Now. press TAB and draw a 2 in the second frame. Press TAB again and
draw a 3.... and so on. up to number B

The animation Is already created. You can use the TAB key (pressing Shift or not) to
display the animation. II you hold this koy pressed, you will see the whole series of the
animation. Use the Z key to vary the zoom percentage In which tho animation is seen. You
can continue to edit any of your frames.

Note: It you exit the graphic editor in a frame Ihiat is not the tirst one, for instance, in
the lourth one. you will see that the windows are put In another order, with the fourth
frame over the rest. Oim't worry, they are still In order. But now, when you want to re-
edit the anlmetion. click on the uppermost frame, the fourth one, so that they don't
get out of order.

S o m e p i e c e s o f a d v i c e a l i o u t a n i m a t i o n s

Nonnally. the best way to create an animated graphic is first to create a sketch ol the
animation, drawing some lines representing the graphic. When this animation looks good,
edit the tirst frame and paint the delmiuve graphc In detail, on the sketch. Later, use the
same techniques and tools to complete the rest of frames.

When long animations (made up ol many frames) are retouched, occasionally it Is advisable
to focus on a specific part of the animation. For that, minimise me rest of frames

The best way to save the animations in the disk is mrougn a file FPG. II you don't have any
(He yet- create a new one (files \ new...). Then, drag the first frame to the file window, input
a code and descnbe it. Next, do the same wrth the rest. In order (the program will suggest
you consecutive codes tor the rest ol frames). When you wish to work again on this
animation, lag all me frames in the Me window and use me c^iion files \ load tags.

It the animation Is not made up ol many frames, and they are not very long, you can use a
trick to arrange Ihe animation's frames without having to put the maps one on each other,
Thus, pass the mouse pointer over all Ihe maps In Inverted order (iirst over the last one.
then over the penultimate one. etc.) until you reach the first one. Then, enter the graphic
editor by double-clicking and the frames will be similarly arranged. The only problem Is thai
mey will get out ol order if you exit the graphic editor and move the mouse pointer over the
desktop in a disorderly manner.

4.12 Trick* and advanced drawing tachnigues

This lasi section dedicated to the graphic editor deals with me description ol some tricks
and techniques used by Ihe graphic anisis ol Hammer Technologies to obtain better results
In the graphics of Ihe games, obviously adapted to the possibilities of DIV Games Studio's
graphic editor.

Page 90

We recommend you to read this section oniy when you have a perfect knowiedge about ali
the possibilities of this editor.

U s e o f s c a l e d
The first technique deals with painting graphics in double size and then, halve them. Thus,
they will gain quality and definition.

For instance, to create a 100 by 100 pixel picture, it is done first 200 by 200 pixels size and
then, it is re-scaied to its real size (with the option maps \ re-scaie,„).

For instance, try to paint a picture with white strokes, against a black background, split into
little closed sections. Then, colour these sections (with the normal filling tool, in different
colours), delete the white strokes (with the diagonal filling too! and the black colour) and
finally, halve the map.

Another curious technique. In the previous picture, instead of deleting the white strokes,
select them with the block edit tool (with the filling selection, by clicking on these strokes)
and apply the softening effect on them several times (with the effects bar)...

Use of masks to replace colours
Occasionally, the aim is to replace a map's colour by another different one. This can be
d o n e a s s h o w n b e l o w.

For instance, create a map with several doodles by pen in different colours. Now, to replace
one of the colours by another one. seieot the masks dialog (key M), choose the colour to be
changed (for that, you can click on the map) and click the button Invert (to protect against
writing ail the colours, except the one you intend to change). Finally, select the rectangles
tool (filled boxes), choose the new colour and paint a rectangle occupying the entire map
(from corner to corner)... and don't forget to remove the mask to go on working!.

U s e o f t h e w i n d o w s

Rather than a technique, this is a piece of advice. Always use the possibilities of the DiV
environment to back up the work. When you are going to "improve a graphic", it can be
advisable to select it and cut and paste it in a new map window. Thus, it will always be
possible to recover the original graphic "if the improvement doesn't improve". When these
security copies don't exist any longer, close the windows.

U s e t h e k e y s t o a d j u s t b l o c k s
When you are creating a mapped background for a game, that is to say, a decor from basic
blocks that are repeated several times, use the cursors to correctly adjust the blocks, as
they will always be more secure than the mouse as far as movements are concerned.
Remember that the Num. Lock key of the keypad must be disabled for the cursors to move
the block pixel by pixel.

C r e a t i n g c o l o u r s r a n g e s
A proper definition of the colours in a game can make the work inside the graphic editor
e a s i e r .

When you need to carry out a transition from a colour to another one in a picture, access
the colours range editor (key C) and select one of the ranges that you are not using to
redefine it. Define a range of 16 or 32 colours, editable every 8 colours. Then, place one
of the colours in one of the ranges positions (by clicking on the little icons with a gray up
arrow) and the other one in the following position (eight colours farther to its right or left).
For you, the program will search for the best possible transition in the palette from one

colour to the other one (the intermediate colours between both). It will be useful to find
transitions between different colours, such us from red to blue, from green to brown, etc.

Always carry out tests by selecting colours from the range and reassigning them to another
position of it (first clicking on a range colour and then, on one of the little gray icons), to
obtain different sequences of colours that can be useful for you.

R e d e fi n e t h e t r a n s p a r e n t c o l o u r t o a v o i d a l i a s i n g

Aliasing implies that the pixels of a graphic's outline stand out too much. If the game Is
going to be developed against a background of a specific colour, or against some specific
shades of coiour. It is possible to create graphics whose outlines are better hidden In the
background with the technique explained here.

For instance, create a new map of 80 by 80 pixels and paint a graphic (e,g., two separated
circles, the first one in white and the other in dark colour). Leave a free margin of one pixel,
at least, around the graphic (empty in black colour). Supposing now that this graphic must
appear against a blue background representing the sky in the game, follow the steps
d e s c r i b e d b e i o w :

• Enter the palettes editor (palettes \ edit palette...), select the transparent colour (the
black colour located In the upper left part) and modify it so that it becomes the colour of
the alleged game's background (the blue you prefer, for Instance, 25% of green and
50% of blue will create a sky blue). Now click on Accept and answer Cancel to the
question of whether you wish to adapt the maps.

• Edit the graphic, you will see the graphic against the blue background, with its outline
aliased. In the masks dialog (key M), hide the transparent colour (click on the first
palette's colour, the blue one). Thus, you avoid to modify the exterior of the graphic.

• Now. to solten the aliasing, select the pen. expand the picture (with the magnifier, zoom
by 8) and carefully pass it along the graphic outline with the D key (smooth) pressed.
The colours of the graphic outline will approach the background colour. Continue to
apply the effect as long as necessary.

• Finally, remove the mask (once again clicking on the transparent colour in the masks
dialog), return to the palettes editor, redefine the transparent colour to black, click on
Accept and again, answer Cancel to the questloh so that the maps are not adapted.

The transparent colour can be defined when you want to see the outline of the graphics
against a specific colour. Keep in mind that you can always stress the transparent colour
with the B key inside the graphic editor.

F i l l i n g w i t h t e x t u r e s
To fill a graphic with a texture. Instead of with a solid colour, you can move the selections
with the Control key, for instance:

• In a map, put a texture on one side (if you have no texture, you can quickly create one
with the spray bar) and, on the other side, paint a circle of any colour (filled). The texture
must be greater that the circle.

• Now, to fill the circle with the texture, use the block edit bar and select the circle (with the
filling selection mode).

• With the Control key pressed, move the circle selection to the texture, then click on the
move icon and shift the block again to the circle.

Pass oraphlcs from a map to another one with TAB
The possibility given by animations to change the map, inside the graphic editor, by pressing
the TAB key, can be used for many other tasks.

If you have several maps of the same size, with different graphics in each one, you can
select a graphic in one of the maps, click the move icon in the edit bar and then, use the
TAB key to copy tfie graphic to another map.

It can also be used to obtain the filling with textures explained in the previous section,
having the texture in another map. Select the graphic to be filled in one of the maps, press
TAB to pass the selection to the map with the texture, cut in it the block (with the move
icon) and return to the map with the graphic by pressing the same key again.

S u m m a r v
After all we've mentioned plus the possibility of merging palettes, the generator of
explosions, the letters fonts and managing filling with gradient, the blocks operations, the re-
scaled, the ranges editor you can consider yourself a professional graphic artist,
providing that you are not daltonic, unfortunately.

CHAPTER 5: Creating Programs. Basic Concepts

Tnis chapter describes many of the terms related to programs which are essential to
understand how to create programs. We recommend you to read it even i(you are an expert
in programming or know a lot atxiut it. Even if you are able to recognise the concepts that
are explained here, you should learn the terms which are used to name them in the DIV
language.

If you have never made a program, it could be hard to understand some of the terms that
are explained here, but you must not worry, you II be able to understand them later on once
you see them used in practice.

S.1 Definition of a program

Basically a program is a series ot written orders that the computer must execute one alter
the other so that the expected results are achieved.

Programs are actually the group ol orders, data, graphics and sounds, etc, which produce
the final result, but in DIV programs will be referred as the list ol programs, thai is, what we
must type in the edition windows in order to create the code which governs what the
videogame does,

A DIV piogram consists ol three big parts: one to define the program data, another to define
the game main orders (orders are called statements in the program) and another to define
the orders of the different type of processes.

For processes we understand the diflereni items rnside a game, i.e. the graphics in motion
(also called sprites). For example, in a space-invaders game, the spacecraft dnven by the
player is a process, each enemy is another process, each shot is another process and so is
each explosion, etc.

Appendix A illustrates the generic outline of a program in DIV language.

5.2 DeflnHlon ol data

Data are the key to programming. They are a very easy concept but somehow dilficult to
describe. If you already know the basis ol programming then all you have to know is ihai m
ihe DIV language lor data we understand the programs variables, tables and structures.
II is a generic concept which includes those three.

If you have never created a program, you should know that computers have a memory
where they can store values. Data are references lo specific positions ol the computer

Page 96

memory containing a numeric value which is used in a program. These data are given a
name, let's say for Instance we call a datum "counter", and this name is used In the
program to refer to that numeric value.

A program can give a specific value to the datum called "counter". To give the datum the
numeric value 123, the program will use a statement (order) like the one below;

counter = 123;

Programs can also check the value of the data or use them In expressions; for Instance, to
give a datum called "mydatum" the value of the "counter" plus 10, we will used the
following kind of statement:

mydatum = counter + 10;

Before the computer executed this statement, mydatum could have any numeric value but
after the statement was executed, mydatum will have exactly the value that results from
adding 10 to the numeric value the datum "counter" has at that time.

D e fi n i t i o n o f d a t a

Data can be classified as pre-defined or defined In the program.

Pre-defined data are names already reserved In the language to refer to certain numeric
values. For example, all processes (graphic items of the games) have two pre-defined data
called x and y, where Its coordinates (the situation of the drawing of the process on the
screen). Therefore It Is not possible to create more data called x or y, since these two
names refer to the pre-defined data In which the coordinates are stored.

The data defined In the program are the new data used by each program to make
calculations, etc, The part of the programs which declare new data are similar to the
following one:

G L O B A L
newdatumi = 33;

This will mean this program Is reserving a position In the computer memory to contain a
numeric value, which will Initially be 33 and that the program will refer to such position with
the name "newdatumt", Program data names are always names the programmer makes up,
We can define as many different data in a program as necessary.

T v p e s o f d a t a
This kind of data, such as "counter", "mydatum" or "newdatumi", are called variables and
are the simplest data, that Is a name associated to a numeric value which Is stored In a
posit ion of the computer memory.

But there are other types of data which are more complex: the tables and the structures.

A table is a list of variables, I.e. It Is a name associated not with a single memory position
but with as many as It Is necessary. To define a table In a program, we make a declaration
like this:

G L O B A L

mytab le1 [3] = 0 ,11 ,22 , 33 ;

In a program, (he above lines will declare 'mytabler as a list of 4 variables. You must take
into account ttiat we always start counting from ttie position 0. and ttiat ttiis table tias up to
position 3. as ttie number between the symbols [] (called square brackets and which must
not be taken for brackets) indicates. Four positions of the memory will be reserved for
"mytablel", and these positions will initially (before the program is started) be given the
values 0. 11. 22. and 33.

When one of these memory positions have to be checked or modified In a program, the
name of the table must be indicated and also a numeric value to specify which table position
Is to be checked or modified must be given between the square brackets.

For example, a statement to put value 999 in position 1 of "mytablel" (which had 11 as
original value) would be as follows:

mytable[1] = 999;

Structures are the most complex data. They are like a file box (thihk of a filing cabinet
containing information about a person in each file) which has a number of notes (like the
name, address, telephone, identity number, of each person) in each file.

Structures are the filing cabinets and each of the files Is called a record, and to each note
within a file is called a field. For example, in a game the following structures could be
defined to keep information atwut the position on the screen of fhree enemies:

G L O B A L

STRUCT posit ion_enemies[2];
coo rd i na te_x ;
coo rd i na te_y ;

END = 10,50, 0,0, 90,80;

This file t)ox would be called positlon_enemies, would include 3 files (with the numbers 0.
1 and 2, as the number 2 in square brackets shows), and each file would have two notes,
the horizontal and the vertical coordinate of the enemy.

Technically speaking, positlon_enemles is a structure wilh 3 records, each one wilh 2
fields, that Is coordinate_x and coordlnate_y.

The list of values which goes next will place the first enemy at the coordinates (10, 50), the
second one at (0, 0) and the third one at (90, 80).

For this structure position_enemies, 6 positions will be reserved In the computer memory
(3 records x 2 fields). Later on, when you wish to access one of these numeric values in the
program, you will have to ihdicate the name of the structure, the record number and the
field name. For Instance, to introduce the value 66 In the memory position where the vertical
coordinate (y) of the second enemy Is kept (that is the 1 record, because the first enemy
coordinates are in the 0 record), the following statement would be used:

poslt lon_enemies[1]. coordinate_y = 66;

In fact, it is very similar to tables except that after the record number you have to indicate
the symbol(a dot) and the name ol the field.

Page 98

D a t a s c o p e
Data can still be cfassilled according to another cnleiia; their scope, in this case, we find
Ihree Kinds of data: global, local and private

The global data scope covers the entire program; this means that whenever we define a
global datum, this will be a memory position (or several positions if the datum is a table or
a structure instead of a variable). This memory position can be accessed from any point in
the program.

Any point in the program means any area of statements. There is one area of general
statements in the main program and then each type of process has its own area of
s t a t e m e n t s .

All areas of statements can be identified because Ihey start with the word BEQIN and
fi n i s h w i t h t h e w o r d E N D .

Therotoro, when we say a datum is global it means that this datum (the same memory
position) can be used in the main program as well as In any of the processes.

The local data are names which actually reler not to a single datum but to several.
Among this kind of data are the above menllonod x arid y used to keep the coordinates of
the processes.

For oxamplo. there could noi be a single memory posiiicn reserved to the datum x. since
each process of the prcgram (each game rtom) wilt have a different horizontal coordinate, a
dilforori value m Its x variable. That's the reason why there will be a memory position
reserved for the x variable of each process

Thus when we use the name x m a program, we will access a different numeric value
depending of which process uses it. Each process will access Its own x coordinate by the
l o c a l v a r i a b l e x .

The global data, on the other hand, aiways refer to a single value. For example, a
global datum of a game could be the player's score. The name "score" will always
reler to this value, no matter which process uses it. This way any process would be able
to modify the player's score and all the processes would access to the same memory
position using this name.

Finally, ihe private data are those which are used exclusively In one process of the
program. For instance, if a game item requires a vanacle to count from 0 to 9 this counter
will be kept in private variable, since llie rest ol the processes do not need to use this
v a l u e .

That means thai In a process we define a private datum called 'mycounter', this name will
not mean anything within another process.

S u m m a r y
For example, when we speak of the pre-defined local variable angle we will bo referring to
a da tum wh ich i s i den t i fied w i th Ihe name "a i tg le " . and wh ich has the fo l l ow ing
c h a r a c t e r i s t i c s :

Page 99

• It IS a variable. Ibat Is. a name which reteis to a single numeric value, and not to a list
o1 them or to a records s t ruc ture .

• It has a local scope, and therefore all processes will have their own angle variable,
each one of therr\ with its numeric value (these can be the same or diflercntj.

• It is a pre-defined datum, this means that it is noi exclusive of a program: all DIV
programs have this datum a predefined.

In addition lo this all we need to know now Is that this is the datum in which the processes of
the games defined their angle to three decimal places.

S.3 Numeric Values and Expreaeiona

In the DlV language, the data can have whole numeric values within the range {-
2147483648 ... +2147483847). These are the numeric values lor which there is space In a
memory position of the computer.
DIV does not use numbers with decimals. It Is not possible to specify 1,5. a value will pass
from 1 lo 2 directly without intermediate values. It is also important to know that we must not
use commas to separate the thousands, for example, twenty three thousand and forty
should be written 23040 and not 23,040.

When we need lo do a more accurate calculation using a less numeric than the units, then
we have the data used to count in tenths, hundredths or thousandths, and so on. This is
called fixed comma. For example. If we use the local variable x (x coordinate) of a process
in tenth parts, we will be able to specify the coordinate 1.5 units by defining the value of x
as 15 tenth parts, which equals to it.

Every time a program expects a tjumeric value at a specific point, a numeric expression
can also be spocifled.

N u m e r i c E x p r e s s i o n s
An expression is basically a mathematical formula which links one or more operands (x, 2.
-7, counter,...) by several operators C. AND. ♦, /....); examples of expressions would be:
2. 2+3 or (x'4)/.3.

As values wc can only use Integers within the range speciliod above and the result ot the
expression will also be truncated within that range.

The operands which can be used in a expression are, besides the numbers, all the data,
functions and items of the programs.

The operators which can be used in a expression are the following: (synonyms o1 the
opoiaior are shown in brackets, it it has any)

• the basic arithmetical operators : () Brackets. + Addiiion, • Subtraction (or negation of
tlio sign), ' Multiplication, / Division and MOD Module (%).

• the logical operators: NOT Binary and logical Nogalion (I). AND binary and logical (&,
48c), OR binary and logical (I, II), XOR (Or exclusive) (<*, "^i).

• the comparison operators: == Comparison, o Different (Is). > Bigger than. >s Bigger
than or equal lo (=>). < Less, <= Less or equal to (=<).

Pago 100

• the pointers operators: OFFSET Direction or sijde (&), POiNTER Operator o1
addressing (•, [1).

• the operators of increments: ++ Operator of irKremeni. - Operator of decrement.

• Itte binary operators:» Rotation to the right.« Rotation to the left.

Note: the function ol each of these operators can t>e learnt later on. You don't need to
worry aboiri it now.

5 . 4 D e fi n i t i o n o f a c o n s t a n t

Constants are a type of names (like the ones given to the data) used as synonyms of
numeric values For instance, we could use a constant called maximum_height as a
synonym ol the numeric value 100

The difference between a constant and a datum is that no computer memory position is
reserved to keep the value ol a constant since such value never changes
(maximum.height will always be 100, once it has been so defined). Thus DIV will replace
(when running a game) every constant with their respective value.

This means it would be the same to use maximum.height as to use 100 in the program.
Constants are used to seo more clearly the list ol a program, in the example given, the
constant will report that the number 100 used in the program is tho maximum height (ol
any object or item in any game).

There are also pre-defined and defined constants in the programs An example ol pre
defined constant could be min.ini, a synonym of the smallest numeric value a datum can
lake in the language (-2147403640), or maxjnt, synonym ol the largest numeric value
(+2147403647). A defined constant In a program would be the one used lor Ihe example
atX)ve maximum_heighl .

W h e n a r e c o n s t a n t s u s e d
Let's say that in a game several limes we set 3 as the maximum number of lives the hero
has. When we wish to raise or reduce that number, we would have to search and replace
that number for the program and we run Itte risk of replacing another number 3 which could
be In the program for something else.

T h e a l t e r n a t i v e t o t h i s i s t o s t a t e a c o n s t a n t w h i c h w e c o u l d c a l l f o r e x a m p l e
maximum_iives as a synonym ol the numeric value 3 and to use such constant in the
program instead of Ihe number. Then, when we wish to change this value, all we'll have to
do is replace that number in the constant statement maximum.iives.

Once a constant has been given a value, this value cannot be modified later in the program.

Page lOt

N a m u

A name is a sequence of alphanumeric characters used to Identity an item in ine program,
such as (he name of a process, of a constant or of a variable. These names can be created
with the following characters:

Symbols; .#»« S P / C * e
Digits: 0123456789
Letters: Bbcdefghiiklmnopqrstuwirxyz
Letters (extended): A g s aaSda eee8 TiK 6686 QDuu 9

R u l e s t o b u i l d n e w n a m e s I n a p r o g r a m

• the sequence ol characters must only contain characters included in the above list
(except (or the capital letters corresponding to the small letters of the list). The compiler
doesnl care for differences belween capital and small letters (ABc or at>C are the same
name for it).

• Inside each sequence we cannot leave blank spaces, i.e. for the compiler it is not valid as
a name enemy aircraft. It will take that as tv/o names. In this case, the name can be
stated as enemy.alrcraft. and we will use the underlining character (low dash) instead of
a s p a c e .

• A name cannot stan with a numeric digit like, for example, 9a. However, after the fust
character every necessary digit can be included in the name (a9 tor instance would be a
valid name).

• The name cannot be the same as one ol the pre-defined Items of the language. To
check this out. you can go to the glossary of terms, or otherwise you can put the edit
cursor on a name of the program and press Ft: if mat name corresponds to an item pre
defined in the language, the system will show a help page about it.

• The same name cannot be used for two different Items. For instance, we cannot give a
constani the name thing and. then, slate a process as PROCESS thlng(x.y):.

S.6 Items pre-defined In the language

Many names and symbols used In the programs have a purpose clearly defined in the
programming language. Thoy are the pre-defined items.

All programs respect a generic structure called syntax. This structure is visible trough
several pre-defined items which appear In specific positions In the progiam.

R e s e r v e d W o r d s

Reserved words are names which have been reserved as key words of the programming
language. For instance. PROGRAM is a reserved word which always defines the beginning
of a progiam.

Page ^0^

Reserved words den t r i ave a d i f f e rence be tween cap i ta l and sma l l l e t te rs . Thus
PROGRAM, is as valid as program, eras Program....

Nevertheless, all examples in OIV Games Studio show the words in capital letters. The only
reason for this Is to help you recognising them more easily.

P r e - d e t i n e d D a t a

Pre-defined data are the varables. tables and structures which ail the programs created
Ihrough OIV are going to have. These are basically used to control the different computer
devices and games graphics.

There are global data and local data (there are not pre-defmed private data, these must be
defined In the programs themselves).

Qlobal data are the information which every program needs. They are malr»ly used to
control devices such as the screen, the mouse, the joystick, the keyboard or the sound card.

Local data are the information about the processes of the games. Tho system needs to
know things such as which is the graphic of a process, what position it is on. Us size. Us
angle, its depth plane, etc. Those data must be indicated In local pre-defined variables of
tho processes. They all have a valid value default and therefore only those values we wish
to change will have to be sei.

Pro-defined data of the DIV language are described in Appendix C of this book.

S y m b o l s

Symbols are |usi characters or combinations ol characters which also have a specific
meaning within a program.

In contrast with the reserved words, symbols are not names. They never used any of the
characters which can be pad ol the names (tliose described at 5.5).

Symbols are lor example all the operators which can be used in the numeric expressions.

Symbols are always tne same for all programs. There are not defined symbols in the
programs. The items which can Pe defined in the programs will always be identfied by
names, either constants, data or processes.

5 . 7 S t a t e m e n t s

In this chapter we talk a lot about numeric values, data and expressions ol the programs.
But programming is really done inrcugh statements. Statements are the orders you give the
computer for each game. We have ihe following kind ol statements:

• The assignments are statements used for calculalions. A numeric expression Is
evaluated and the result is assigned to the datum on the left of ihe equation.

• The conditional statements permit to verify If a condition Is fulfilled (for example if a
process Is at some specific coordmaies. II the energy equals zero, etc.) and. in this case,
to execute another group of statements.

Page 103

• The loop statements allow to repeal a group of statements lor a certain number of times
or un t i l a cone i t ion i s met

• Ttte calls to a function ate the statements which really allow to execute "visible* actions
within a game, such as to put a graphic on the screen, to read the keyttoard, to make a
sound, to change the video mode. etc.

• The calls to a process are very much alike the calls to a function, only that they call one
of the PROCESS blocks of the program itself. Call to processes are generally made to
add a new process to the game {an item such as a bonus, an explosion, an enemy, etc.)

• The control statements are a numtxer of generic statements, such as FRAME, which
allow to visualise next Irame in the game, or RETURN, which allows to finish a process,
or CLONE, which gives you the possit^iify of creating a copy of a process.

Generally in a process there are a loop stalemenl and a FRAME statement. The loop is
used by the process to execute a number of orOers in all the game frames and the FRAME,
which appears like one of the statements inside the loop, is used to visualise the process
graphic In the fonowng frame (next frame). For example:

L O O P

X = x+1;
FRAME;

E N D

The LOOP ... END loop is the simplest; it indicates that the statements inside it must be
repeated indefinitely, once and again. The statement * = x+1; is an assignment used to put
in the local variable x (horizontal coordinate of the process) the result of the expression
X'fl. i.e. it adds one to this local variable and therefore moves the graphic of the process
one point to the right. And the finally, the statement FRAME, will indicate the point in which
ihc process graphic has to be visualised in a Irame of the game.

5 . 8 C o r f d l t l o n i

Conditions are expressions usually like the loiiowing ones:

x < 3 2 0
s i z e s s l O O A N D g r a p h l o l O
y=0 OR (x>=1D0 AND x<=200)

They are used within some statements to check the program Oata. For that purpose the
comparison opeiaiois are used. Those are the following:

ss Comparison of equality.
o Companson of difference (also vaiidia).
> Companson ol bigger man.
>s Comparison ol bigger than or equal to (als^o).
< Companson ol less.
<s Comparison ol less or equal to (also3<).

Page 104

Brackets ans logical operators can also be used to link several check-outs within a
condition. The logical operators are:

OB it compares that at least one ot the two expressions is true.
AND it compares that two expressions are tfue.
XOB it compares that only one of two expressions is true.
NOT it compares that the followino condition is not met.

Next, some conditions lormulated with these symbols and operators are shown, together
with a description in regular language.

x > 0

this condition verifies that x is a bigger than number Iharr 0.

x > = 0 A N D x < = 9
it verifies that x is a number between 0 and 9.

y==x OR y=2*x
it verities that y is equal to x or to 2*x.

xoy AND NOT ys:0
ft verifies that y Is dilferenl from x and that y is not 0-

(x<0 OR x>9) AND ysu
It verifies that and equals z and also that x is not between 0 and 9.

5.9 Comments

A comment is a elanfying note about the program. Comments are not necessary tor the
program to work correclty. There are two kinds of comments:

• OI a single line: they start with the symbol // and finish at the end of the line in which they
a r e d e fi n e d .

• Of severaiiines: they start with the symbol/* and finisli with the symbol •/.

Next is an example program with several comments.

PROGRAM my_gam8: II Comment of a single line.
r
This Is an example of a comment of several lines, in which we can have as many
clarifying notes about the programs as we like.
• /
B E G I N

FRAME;
END II the main program ends.

Page 105

All the texts inciudecJ in a comment are ignored by the compiler. It is possible to put as many
comments as necessary in a program and at any point of the program. The comments
starting with /■ and finistiing with V (called comments ol several lines) can also start and
finish In the same line.

5.10 Funct ions

Functions are a number of names reserved in the language and used as statements to do
many actions In the programs.

The functions which are available in the language are described thoroughly in Appendix B.
Here Is a summary of the available functions classified according to their task and a brief
description of each one of them.

Ail functions are used by simply specitying in a point ol the program Its name and. in
brackets, the values they require to specify the exact function ihey perform.

F u n c t i o n s o f I r r t e r a e t l o r r b e t w e e n p r o c e s s e s

colllslonO - It detects the collision between two processes.
get_angle() - tt gets the angle towards another process.
get_dlet(} • II gets the distance to another process,
get dIstxO • It gets the horlaonial distance of an angle and a distance.
get.dlstyO - If gets the vertical distance ol an angle and a distance,
get Jd() - It gats Identifying codes of a type ol processes.
let_me_a1one() • It eliminates the rest of the processes.
slg"nal() - if sends a signal to another process (for example, to eliminate a process).

Malhemat lea l func t ions

abs() - It gets the absolute value.
advanceO ■ It advances the process coordinates In their angle.
fget.angleO - It gets the angle between two points.
fget_df8t() - It gets the distance between two points.
near_angle() - It gets an angle near another in a given increment.
pow() - It raises a number to a power.
randO • It gets a number within a range randomly.
rand_seed() • II initiates a series of random numbers.
sqrtO - it gets the sguare root.

G r a p h i c f u n c t i o n s

clear_screen() - It clears the screen
get_plxel() • It gets the colour of a pixel on the screen.
map_block_copy() - It copies a block of a map In another.
map_get_pixe1() - It gets the colour of a pixel in a map.

Page 106

map_put() - It puts a graptiic in a map.
map_put_pixel() - It puts a pixel in a map.
map_xput() - It puts a graptiic in a map. witti effects.
put() - It puts a graptiic in ttie screen background.
put_plxel() - It puts a pixel in ttie screen background.
put_screen() - It puts a map as screen background.
xputO - It puts a graptiic in ttie screen background, witti effects.

M u s i c a n d s o u n d f u n c t i o n s

ctiange_sound() - It changes tfie sound piarameters.
is_playing_cd() - It reports if ttie CD is playing.
load_pcm() - It loads a new sound effect.
play_cd() - It initiates playing of a CD-Audio.
set_volume() - It sets ttie volume of tlie mixer.
soundO - It emits a sound effect ttirough ttie card.
stop_cd() - It stops the CD-Audio playing.
stop_sound() - It stops a sound effect.
reset_sound() - It resets ttie system of sound,
u n l o a d n c m fl - I t u n l o a d s a s o u n d o l f o c t .

E n t e r i n g f u n c t i o n s

getJoy_button() - It gets the state of the buttons of the joystick.
getJoy_.positlon() - It gets the position of the axes of the joystick.
keyO - It gets the state of a key.

F u n c t i o n s t o u s e t h e p a l e t t e

convert_palette() - It converts the palette of a graphic.
fade<) - It starts a fading effect on the screen.
fade_off() - It fades off the screen.
fade_on() - It fades on the screen.
load.palQ - It activates a new colour palette.
roll_palette() -It makes a colour roll with the palette.

F u n c t i o n s f o r s c r o l l a n d m o d e - 7

move_scroll() - It updates the coordinates of a scroll.
refresh_scroll() - It updates the background of a scroll.
start_mode7() - It activates a mode-7 window.
start_scroll() - It activates a scroll window.
stop_mode7() - It stops a mode-7 window.
stop_scroll() - It stops a scroll window.

F u n c t i o n s t o p r i n t t e x t s

delete_text() - It deletes a text from the screen.
load_fnt() - It loads a font for letters.
move_text() - It moves a text to another position.
wrIteO - It writes down a text on the screen.
unloadJntO - It unloads a font for letters.
wrlte_lnt() - It writes down a numeric value on the screen.

F u n c t i o n s f o r a n i m a t i o n s

end_fll() - It ends up an animation.
frame_fll() - It shows next frame of an animation.
reset_fli() - It resets an animation.
start_fli() - It starts an animation FLI/FLC.

S c r e e n r e o i o n s f u n c t i o n s

deflne_reglon() - It defines a region or window on the screen.
out_reglon() - It reports if a process Is outside a region.

I n f o r m a t i o n a b o u t g r a p h i c s f u n c t i o n s

get_polnt() - It gets the position of a control point In a map.
get_real_polnt() - It gets the real position of the control point.
graphlclcJnfoO - It gets Information alwut a map.

I n l t l a l l s l n o f u n c t i o n s

set_fpsO - It defines the number of frames per second in the game.
set.mo)̂ • It defines the video mode.
load_fpg() - It loads a FPG file with graphics.
load_map() - It loads a map.
unload_fpg() - It unloads graphics from a FPG file.
unload_mâ) - It unloads a map.

Data record ing funct ions

loadQ - It keeps the value of a series of data in a file.
save() • It saves the value of a series of data.

Page 108

S y s t e m t u n e t l o n s

exito • II exits from the game.
syslemO • it executes an external command of the system.

Note: You will learn the use of all these functions as you go on creating programs. All of
the functions are rtot at all used in every game; each game uses only those it needs
depending on itie technique and on the effects ft Is going to offer.

You can obtain help in the environment itself about any ol these functions just by typing its
name in a window of a program and then pressing Ft.

5 . 1 1 P r o c e s s e s

This chapter has alreaoy dealt with processes. There is a difference between the blocks
PROCESS of the programs, which define ttio performance of a specific typo of
processes, and the processes ot the game white running, which are objacts of the game
whose porlormance is governed by one of the blocks PROCESS of the program, depending
on Its type.

PROCESS <name ol the process > (<list ol parameters >)

PRIVATE II Declaration of private data, if there are any.
<deciaration of datum >;

BEGIN // Stan of the statements of the processes
<sia1ement>;

END // End ol the process

The blocks which define data and statements lor a type ot processes must start with the
reserved word PROCESS followed by Its name (the name by which the processes ol that
type are going to be identified) and its call parameter in brackets.

Parameters aie a list of data In which the process is going to receive different values. The
brackets are mandatory even it the process does not have parameters.

After this headirig, there can optionally be a PRIVATE section where the data which are
going to be used exctusively in the process are declared.

And, linally. the code lor the process has to be specified. This code is a sequence ol
statements between the reserved words BEGIN and END.

Page 109

A process generally corresponds to a type of item in ttie game, sucfi as a spacestiip, an
explosion, a shot, etc. and within the process code usually a loop is implemented. Within
this loop, all the values needed to visualise such item (graphic, coordinates, etc.) and, then,
by the statement FRAME the order to visualise the object with the set features will be given.

CHAPTER 6: A Practical Example

Lei's gel to itie point. There are still ruany important concepts to be explained but this
ctiapier deals wiitr how to create a gome step by slop.

This chapter gives you a little break after all those boring concepts and computer terms.

The first game is going to be a very simple version of a Space invaders game. This example
will help to explain the general methodology to work with DIV Games Studio.

6.1 The grapNc work

The first thing you need to create a game is an idea and then to create the graphics lor it.
We are not going to give you the graphics because we'd like you to Oo all ot this by yourself,
so we will just give you the necessary guidellnos for you to create those graphics.

Note: do the required graphs for the game (we'll tell you which) quickly. Don't worry If
ihey don't turn up too great: It's only a test.

• Load the palette default of OIV Games Studio (palellcs \ open... indicating div.pal). This
palette will be used by the game. Then select palettes \ show palette... to see it.

• Create a new map of 40 x 40 points, to design the main spacecraft (maps \ new...).
Enter the editor by double clicking on ihe map and create the drawing ol the spacecraft
as a filled inangle pointing up and centered in the map.

All game graphs are to be miroduced in a file FPG which will be loaded later in the game.

• Create a new file called testl.fpg (with option files V new...) and drag the spacecralt
graphc to this file, indicating 1 as graphic code. Create the file in the directory default
(the directory called VFPG withm DIV).

• Now do Ihe same to introduce In the file a star background. Create a map ol 320 x 200
points, select the colour white, Ihe spray tool (the smallest size) and rrtove quickly Ihe
drawing pointer all around the map until you get a dotting more or less consistent. Then
introduce itus graphic in the file with the code 2.

• Finally, create a graphic (any graphic) for the shot of the spacecraft, approximately of 4
X 12 points (with the graphic code 3) and an enemy of (he same size as (he main
spacecralt: all you need is to draw a filled circle (with the code 4).

Once the lour maps are in the file, you can start programming the game. You can close all
the maps to tree space in the desk, since all of them are kept in the file (maps \ close all...).

Page 112

6 ^ T h e fi r s t t e s t s

Croaio Q new program (programs \ new... indicating as name ol the lilc testl.prg). an
empty window edition will appear. To start with, iflie ttie lollowing list (you can use capital or
small letters)

PROGRAM testt;
BEGIN
E N D

Triis Is already a correct program in ttio OIV language, aliliough it doesn't do anyttiing. From
now on. tne mam statements ol the program must t>e defined between the reserved words
BEGIN and END SO that the computer will receive itie dltferent commands.

The first thing ls*lo instnjct the computer to load the tile where the graphics have been
introduced; this will be done with the totlowing statement (write It down after BEGIN):

losd_fpg{ "testt .fpg");

This statement calls the function ol the language loadjpgf) which loads the file with the
graphics for the game. Now. create a PROCESS block to control the main spacecraft, right
alter END of the main program.

PROCESS spacecraft 0
B E G I N

E N D

Then you have 10 Slate In the main program that you wish to create a process of the type
spacecraft, and you caii the process (right after the loading of the fpg fiie) with the following
s t a t e m e n t :

spacecraftf);

To display the spacecraft within the program, some of its local variables must be defined in
order to define the position of the graphic for ihe spacecraft. The code of the graphic of the
process must be indicated in the graphic variable, and Its screen coordinates must be
indicated in the x and y variables.

Then you have to use Ihe statement FRAME to display the frames and some kind of loop to
do this several times. Otherwise il the process visualises only one fiaire, Iho program wili
finish too soon. For instance, let's use the toop LOOP .. END. so that the staiemeni
FRAME Is always repealed.

Taking Into account that the graphic of the spacecraft is number 1 , il It Is placed right In the
center of the screen (In the coordinates (160. 100). since Ihe screen default will be 320 x
200 points), the spacecraft process would tie as folfows;

Page 113

PROCESS spacecraft ()
B E G I N

graph = t;
x = 160;
and s 100;
L O O P

FRAME;
E N D

E N D

Gnren thai several siatemertis can oe pui In ihe same line and thai the spaces to separate
names and symbols are not necessary. Ihe three space variables could be detineO In a
single line such as the following one:

graphs!; xst 60; y=100;

You can debug the program step by siep now lo see how the computer executes all the
statements ot that program; to do that press F12 and. once you are In the program
debugger (described at 2.10), press the button Debug several limes. To ertd press ESC (to
exit Ihe debugger) and ALT+X to exit tho game.

You have already created a program whiclt creates a process and shows Its graphic on the
s c r e e n .

0.3 Moving the spaeecrstt

To move me spacecraft, ail the keys of the cursors will be used. The functron key() can be
used to check rf a key is pressed. We will also need a condrtional statement to specify mat
the spacecraft must only move when certain keys are pressed. Include mese instructions
right before the instruction FRAME of the spacecraft.

IF (keyL right))
X s x + 1 ;

E N D

This statement Indicates that when Ihe "right" curser key Is pressed, 1 must be added to the
horizontal coordinate of the spacecrall.

The statement x=x+1; will add 1 to the local variable x. This can also be done with the
statement x^-si; which Is an abbreviation of the one above The conditional statement IF()
. END will execute the statements Inside It when Ihe condition between brackets is tullilled.

Then, me statement above could have also been specified in a single line such as:

IF (keyLright)) x+=1; END;

Page 114

You can iry to execute the example with the key FIO. Press right cursor to move the
spacecralt point by point in that Qirection and then ALT-X to return to the desk.

You cah complete the motion ol the aircralt addihg these three statements:

IF(key(_l8tt))x-!i1;END
IF (keyL<3owti)) y+=1: END
IF(keyLup))y-=1; END

If you run the program now you will see that you are ab'e to move the spacecraft around the
screen, even using the diagonals.

To move the spacecraft faster, you can replace the 1 of the lines above by another number,
lor example, let's replace them by 4, And to move the spacecraft with the joystick (if you
have one), you can replace key(right) with joy,right. key(_lefl) with Joy.left. etc.

6,4 Creating more proeesees

Now you can create the processes lor the spacecraft shots. Write the following block alter
the block which controls the spacecraft

PROCESS ^ot(x, y)
B E G I N

giaph = 3;
L O O P

y -a 16;
FRAME;

E N D

E N D

You can see an important difference with the spacecraft process. Now, the variables x and
y are specified between brackets. These are called parameters and what they mean is that
when we call the process shot two values must be spedlied In brackets and the process will
take these values in its variables x and y. Therefore, tne process cannot bo called shot();.
Its coordinates will have to t>e inOcaied and it will have to be called for example
shot (t60 ,200) ; .

t

The code of this process defines its graphic (code numtier 3) and then it enters a loop
LOOP END (an indeiinite loop) sublracting 16 to Its coordinate y (thus moving the
process 16 points upwards) and shows an frame.

If you execute the program now you won't see the difference with the previous program;
although there is a new PROCESS block, no process of this type appears in the game. The
reason is that the process has not been called in any point of the program.

The shot must be called by the process of the spacecraft, for example when it delects that
the Control key has been pressed. To do that the following statement must be used (right
alter the statements which detected the moves of the ^acecrafl);

IF (keyLcohlrol)) shot(x,y): END

Page 115

gu aSed

siogs em jeije
)(30|p weu eyi uesu| ueejes em jo luouoq ayi gBnoji sjeeadestp n niun uiwop seo6 'siogs
em e>ii|un 'gaimA sseeojfl e aieejo oi 6uio6 ejE o/v\ sessaeojd seimeue ppe oi :iinor||!p
ejouj Buiwemos <ji oi BuioB sjb ew mou :sioogs iiaiij*> ijEjeeoBds b sfteg i<pesj|E o\\

S8|ixt«ue 6u|ppv s'9

11 Xiuea 01 uieSb jsBBnqep egi esfi Buiuuru
dois ii!M îegi NI036 'mm 1° ON? SMi gsBe; Asm uegM sjojsjsm :dooi em |o ino leB oste
l|iM Aegi jsejas sgi jo ino leB siogs sgi uegM eou|s ŝi| noA sb gonm sb loogs ueo noA «om

(ueejps em jo mo sieB ssssoid em luun) q
uegi sso| s! sseoojd em |0 A eieuipjoos sgi mun a i miwi peiidiLop si nuNn (O sieiioBjq eg]
u] peiBPipui uoiiipgpp em uegw mq Aieiiuiiepui || op i.uom i| jSASMog 'ssmii lejeASS |r uigiiw
suOHOnisigi ogi sieedoj upjgM luemeieis dooi e osie si (hiiNn " iV3d3U luemeiBis ogj.

!(0>A) nUNIl

:9l=-^
J.V3d3ti

Buwouol egi giw 0N3 dOOl dooi em BupBidej
'eouBisu! JO) 'sAem iBjeASs ui |i op ueo no^ 'ueeips egi oo leeddB Aem ueg« peieujujiie
SJB Aegi legi os logs edA] egi |0 sessasojd agi Aiipom isnui noA 'sigi saios oi ;epJO g|

eiuji gpee le seg u/eiBoid egi sessasoid |0 isquinu
sgi jeujop igBu jeddn egi g| upegp oi 'leBBnqep sgi Buuibp 'zij gprn emeB egi dcis pbp doa

'l|E luegi sseoojd oi jeBuoi seiiei metsAs egi (jagBjg ejB
Aegi epujs 'ueeips egi uo luegi ess i.uop noA ji usas) aum euies sgi le Buiaoui sessepojd
ejouj JO ooot 'OOS eJB ejsgi uegM pue suibB egi u! eAiiPo logs edAi sgi (o sessesojd
ejcm pge ejom ojb ojagi legi loej agi oi enp si si«i Ajwois ejom pge ejogj seoB suibB
egi laieiqojd jegiouB pui| him noA eiigM b joi loogs soA pub sllbB agi smoaio noA uegM

jsg6|g siuiod S! logs egx 'PSaios eg him ujsjqojd am pue
(asjnop |0 dNB ' dl igemeieis egi episui) :(02-A'x) logs Aq ueo snojASjd agi aoeidej oi Aji

(pjEMdn o6 aAiieSeu egi pue pjea\umop o6 ssieuipjooa
aAjiisod agi eauis) snjEA sss| e {jaiemejed puooes egi) siogs am jo| A aieuipjooa b asn
01 sABg noA meiqoJd sigi sa|os oi igBu ijooj i.usaop legi puB gajoaoBds agi jo eippiiu egi
ujoj) amop siogs sgi miaiqojd nems e oi eujoo iiim nox uieBe Old Buisssjd i; Aji ubo nox

siogs sijBuj 01 '(|0J)uop~)A8)| lou pue luounq'Aol
siBorpuj 01 oABg noA 'sAa>t egi lo peeisgi gaiisAo! egi giiM pemujejBoJd sbm saoio egi i|

seiqBNBA
lIBJoeoeds sgi u| paAes saniBA pusuing suibs egi (A'x) saieuipjoos si! u| ssaispsj ssspojd
logs egi os uBjpapeds agi joi se (A'x) ssiBuipjoop euies agi sjaisiuBjed se ssBd him pue
pesssjd SI Aax jOJiuoo agi legi sisaisp p uegM logs b aisajo i|im gBJoaoeds sgi Abm Sjgi

PROCESS enemy (x, inc_x, inc_y)
B E G I N

graph = 4;
y = -20;
R E P E A T

X += inc_x;
y += lnc_y;
F R A M E ;

UNTIL (y>220):
E N D

This process receives three parameters; the horizontal coordinate (the vertical one will be
set by the process itself with the statement y=-20;, twenty points over the screen) and then
two values lnc_x and lnc_y which are two names of invented data (they are two new
names, we could have used any other).

These two data will be exclusive of the processes of the enemy type. In this case they will
be used to define the horizontal and vertical increment of the process per frame, i.e. the
number of points which will change its coordinates x and y.

It will also set its graphic, which was number 4; then the process will stay in a loop, and
each frame will add these increments to its coordinates until the coordinate y Is a number
bigger than 220. Thus the enemy will have for sure exited the bottom of the screen and its
e x e c u t i o n w i l l b e fi n i s h e d .

We'll make the general program create the enemies processes; to do that, after the call to
the spacecraft process, the following statements have to be Included:

L O O P

enemy(rand(0,320),rand(-4.4),rand(6,12)):
FRAME;

E N D

A loop has also been created (or the main program, so that each frame creates a new
enemy. The FRAME statement is mandatory, because even If the main program hasn't got
any graphic to display In this case, it must anyway pass the images so that the program Is
not stopped.

The function rand(minimum value, maximum value) receives a number randomly which
ranges between the two provided.

This way the enemy(x. inc_x, inc_y process will get a horizontal coordinate at random
between 0 and 320 (any position from the left to the right of the screen), a horizontal
Increment between -4 and 4 (the enemy will be able to move from 4 points to the left to 4
points to the right, in each frame of the game) and a vertical Increment between 6 and 12
(thus the enemy will go down the screen between 6 and 12 points per frame).

You can press F10 to try it. And yes..... It's true, perhaps there are too many enemies. Then
we can reduce the frequency of enemies appearing. Instead of making the main program
create one enemy per frame, we will specify a certain frequency of appearance.

Page 117

This can be done several ways. For example, we are going to use a condiiional statement to
verily if the random numtier between 0 and 100 is less than 30. To do that, the call to the
enemy process ol the main program have to be inserted in an IF()... END. as shown below:

I F { r a n d (0 , 1 0 0) < 3 0)
enemy(rand(0,320),rand(-4.4).rand(6.13));

E N D

Now. the call to the enemy process will not be made every time, but only In 30% of the
frames, as a general average. The reason lor this Is that on obtaining the numbers
randomly, several of them tietween 0 and 30 could come out consecutively, and then many
numtjer bigger than 30. etc.

6.6 Retouching the program

To include the star background you drew ttefore, you'll use the function put_Bcreen().
indicating after the load of the file FPG in the main program the (cilowing line:

put. screen(0.2);

This function requires two parameters. The first one is the number of the file where the
graphic we wish to use as background is located, the first file loaded In the program Is the
file 0. the second one is 1. and so on. Logically since only one file has been loaded in the
program, this one will be the file number 0. The second parameter is the number ol the
graphic {graphic code) wiihin the lile and the star background was inserted with number 2 In
the fi le .

Now we will use a little tnck to avoid seeing the enemies so much alike: we will change their
size. We will define their local variable size, which indicates their size In percentage (by
delauli IS 100. which Is the original size) as a random number between 25 and 100, this way
some enemies will be bigger than others.

This can also be done in diffsrenl ways: tor instance, a new call parameter can be added In
the enemy processes indicating that instead of three values. Ihey must have four and thai
the fourth one will be in their size vanatilc. The head of the process which controls the
enemies w i l l t hen be as fo l l ows :

PROCESS enemyt*. inc_x, inc_y, size)

Bui now the call has to be modified too so that the fourth value Is sent to this processes as a
random number between 25 and 100 The rand() function will be used again and the call to
the enemy process of the main program will tie as follows:

enemy(rand(0,320),rand(-4,4),rafid(6.12),rand(25,100));

P a g e i t S 5 ^

Tne calls lo very long processes or tunclions (those with many parameters), like this last
one, can be split in several lines so that the program does not go loo wide. This can be
done by dividing the line practically at any position, lor instance:

enemy(rand(0.320),rand(-4,4),
rand(6,12),rand<25.100))i

Instead of modilying the call parameters of the enemy process, the lollowing line could have
been included alter BEGIN of the enemy block:

s lzesrand(25 .100) ;

And, as a last retouching lor now, we'll make the spacecraft always appear in the lower part
of the screen. To do thai the statements which used lo allow the vertical move of ihe

spacecraft have to be eliminated (in the y coordinate); these statements were:

IF {key(_down)) y-f=4; END
IF(key { .up))y -=4 ; END

Once these two lines have been deleted (or commented by a // symbol at their start), the
spacectall have to be placed in the lower pan. To do that, the statement yslOO; of the
spacecraft block (which used to place the y coordinate of the spacecraft in the middle of the
screen) will have to bo replaced with the statement y=lBO; (which places the spacecraft in
the lower pari Of the screen).

6.7 DestiroylnA proeeMes

This example is looking more and more like a real game. We are sure you must bo willing lo
know how to kill lt»e enemies, because it's unconvincing that the shots do nothing lo them.

Wo will not only make the "laser" shots from the spacecraft to eliminate Ihe enemies, we will
also program an explosion to make its destruction more real.

To detect the collision between two processes we use the iunclion colilsion(). which
requires as parameters Ihe indication of the type of processes to verity if there is a
collision. Add the lollowing line in the enemy process loop (anywhere in the statement
REPEAT ... UNTll.0].

IF (collision(TYPE shot)) BREAK; END

The TYPE operator obtains Ihe type of process and indicates afterwards its name. The
colllsionO function iwll indicate if the process of the enemy is colliding with any shot, if that
were Ihe case, the staiemeni BREAK will be executed.

This statement is used to exit from a loop, i.e., when the instruction BREAK is executed,
the enemy processes will exit from their REPEAT ... UNTIL() loop, and they will reach the
END of their BEGIN and end their execution. You can see how the statement BREAK
makes the loop to exit, and it is not necessary lo comply with the y>220) for Ihat.

Page 119

To exjl the loop wtien trie collision with the shots Is detected, we could have also modified
(he exit condition of the loop In the sense that the loop would t>e repeated until the
coordinate y were bigger than 220 or until the collision were detected: to do this the
following condition will have to be modified in the UNTIL of the enemies:

UKmL (y>220 OR coHisionfTYPE shot)):

In this case the above conditional statement (IF... END) wouldn't be necessary.

In order to program the explosion we have to create it first. To do that, you must access the
explosion generator (maps \ exploslort generator). Set the size 40 x 40 points (that is the
enomy's size). 6 trames (the value by default) and select as the three colours, top down,
dark red. bright red and yellow.

After pressing Accept, 6 new windows will appear on the desk. You have to drag them In
order onto the file lestl.fpg of the game (following the sequence of the explosion) and
Indicate as codes of the graphics numbers Irom S to 10.

To display in the game, another loop is going to be done in the enemies processes, alter
REPEAT ... UNTILO Thus when they exit from it. the explosion is displayed instead of
ending the program. To do this, the graphic have to pass all values from S to 10. giving a
frame with each one of them. In this case another loop statement will be used: FROM. This
is one ol the easiest and most versatile statements. In this case, add the following
slafement (after UNTIL):

FROMgraphsSTOtO:
FRAME:

E N D

And we already have the game explosion. The FROM uses a variable as a counter, from an
initial value to a tinal one. and executes the instructions inside (those between FROM and
END) for ait these values of the variable. The explosions will have the same size as the
enemies, they'll be small if the enemies are small or big II ihey are big because the variable
size hasn't t>een modilied and. although the graphic changes, each explosion continues to
be the same process which controls the enemy, with the same data.

What are you wailing for? press FIO again to verify the effect ol the explosions.

6.0 Last minute ehengae

Basically the sample mini game Is finished: now it's up to you to go on advancing and
improvising your own moditications.

Bui before ending this practical chapter, we are going to suggest some inleroslmg
m o d i t i c a t i o n s .

For example, to improve the control ol the protagonist spacecraft you can do it with the
mouse. To do that Ihe two IF ... END which controlled the keys ol the cursors by the
siaiemeni *=mouse.x: (which assigns the spacecralt the coordiriaie x of the mouse pointer)
will have 10 be replaced. And to shoot with Ihe mouse, replace We eondiWn ol the following

Page 120

121 sBsd

aN3
□NB

:3nvud
QNa

!(OS-A'x)lous
(Udresnoui) j|

:x'9snoujsx

dOOT

:oBi=A
:o9i"

UsMdBJB
Nioaa

0 ueJSJie ssaooud

QNB

□NS
'anvud

□Na

:<{zl'9)puej'(fr»puBj'(ose'o)PuB')^iiisus
(oe>{ooi'o)puBi)di

dOOT

:()il3J3J!e
!(S'0)U93JPS-incI

•(.6di-ils8i.)6drpB0|
Nioas

Uisei nvuooud

'esnoui sm Aq pajiojiuoo uoi5i8A sqi u| suoiiesitipou ne JSije
sq ii!M I! SB ujEjBojtJ sqi |o isi| aqi Sj M0|3q 'jaidBip siqi ui lujod Xue IB iso[106 noX asea u|

uejBojd am jo (sn 6'9

(u/eiSojd U|8ui
eqi p NIoas uJPJBojd aqi jo 6u>uu!6aq eg) |e :(oi'ooi)sdrias quaujeiBis agi
jnd 01 Aji 'efdiuBxe joj jeindujoq gBnoue isb(e ui unj lou sj eiusB egi uagw peiijujo

eq UBO gagM s/B|dstp p aaquinu agi puoaes egi puB e/uS jsniu aiueS egi puoaas
jad sagjBjj p jaqainu egi si auo isnj agi isiaijoaiq ueeMiaq sjapiiiBJed omi sajinbai
uoipunf sjgi (puooes jad sauieji las) {̂drias uoipuni giiM psBuego eq ubo paeds

agi asnBoeq 'A|wo|S 001 jo isej 001 saoB auiBG e p ̂om pu isnui noA :iuBjjodui|

(pOije urt) e aq urn issgdeJB'asnoui -epuiBxa joj) gdejB'Ssnoiu
aiqejBA egi 01 oigdBJB p epoo sii BujuBisse Aq uiBjBoJd eui ui jaiujod esnouj b ind ubs nôi,

seDusga
asagi i|b giw si|00| ujejBojd egi Mog >|oeg3 01 isp pcsu egi le >|00| ubo no/, :e|ON

•(passajd sj asnoiu agi p uognq ijej egj legi
seiBsipu! goigM) uarasnouj uogipuoo agi gim (uoipunt (|ojiuo3~)Aa)(pai|B3-os agi) ji

PROCESS shot(x,y)
B E G I N

graph=3:

R E P E A T

y-=16:
FRAME;

UNTIL (y<0):
E N D

PROCESS enemy(x,lnc_x,inc_y)
B E G I N

graph=4;
y=-20;
slze=rand(25.100):

R E P E A T

x+=lnc_x;
y+=inc_y;
F R A M E ;

UNTIL (y>220 OR colllslon(TYPE shot));

FROM graph=5 TO 10;
F R A M E ;

E N D

E N D

If you have been able to follow this chapter till now, we are sure you will be excited to show
a copy of the program to a friend. To create this copy in a floppy you need a formatted disc
(3'1/2 inches) and to follow the steps described at 2.1 / Creating Installation...

W e r e c o m m e n d . . .

You can press F1 on any name of the system variable, reserved word of the language or
program statement to obtain more information. We recommend to examine the examples
of the language functions, which are very small programs (easier to understand than the
sample games) where you can find a great number of tricks and interesting techniques.

You can go back to point 5.10 of this trook to see the list of functions and thus to be able to
determine those you are Interested In. There are many interesting things: adding scores
(text functions), sliding the screen background (scroll function), adding sound effects, three-
dimensions effects (mode-7 functions), etc.

We also recommend to go back now to 2.10 to practice with the program debugger, using
the example you have created.

And. of course, we recommend to read chapters 7 and 8 where the rest of the necessary
concepts for programs creation is described.

Page 122

CHAPTER 7: Structure Of The Programs

This chapter reviews the syntax of a program in Oeiaii A summary of this syntax can be
found in appendix A.

The most advanced concepts about the program are described in chapter 8. thus avoiding
to mix them with the syntax. However, some of them are used in this chapter. Thus, it is
advisable to consult the following chapter in order to obtain information about identifying
codes, types of processes, states of processes, etc.

7.1 Head ol the program

P R O G R A M < n a m e > :

All the programs must start with the reserved word PROGRAM followed by the name of the
program and a symbol: (somicoton). This head is obligatory in all the programs. Before il.
only one or several comments can optionally appear.

7 . 2 D e c l a r a t i o n o f c o n a t a n t a

C O N S T

<name> = <numeiic vaiue>:

This section of the program is optional, as its purpose deals with setting a series ol
synonymous numeric values.

In a game, for instance, number 3 has been set In one or several points ol the program as
the maximum lives of the leading character. If the aim is to modify this number, increasing
or decreasing it. it will be necessary to look for this number and to replace it in the program.
But there is a risk of replacing other '3' numbers appearing in the program v/ilh different
a l m s .

A n a i i e m a l i v e i s t o d e c l a r e a c o n s ta n t c a l l e d , l o r i n s t a n c e , m a x i m u m j i v e s a s a
synonymous ol the numeric value 3 and use that constant in the program instead of the
number. Now. il the aim is to replace this value by another one. it is done simply in the
declaration of the constant maxlmuin_llves.

This section then establishes a list of names that are going to represent a series ol numeric
constants. This section must obligatory start with the reserved word CONST and then, lor
every declared constant, its name followed by the symtiol = (assignment symbol) and a

1 . - S L l J fPage 124

constant exptession (numenc value) must appear. After the aeclaralior of every constant
Itie symbol; (semicolon) must appear.

Once a value fias been assigned to a constant, it won't later be possible to modify the
lOffner in the program.

7.3 Declaration of data

In a daia declaration, three dilforcnt kinds of objects can appear, a variable, a table or a
s t r u c t u r e .

In general, a variable will store a simple numeric value. A table will sioro a list of numeric
values. And a structure will store a list of records of several fields (such as a list of index
cards with varied information).

Note: AH the data will be declared with a name whicfi. from that moment, will become the
means to access or modify the information contained in those data.

Each data will belong to a specific area, depending on whether its declaration has been
made inside the GLOBAL. LOCAL or PfllVATE sections. These three sections are
optional (they may not appear in the programs it it is not necessary to declare dala of these
types).

II is possible to access all the global data from any point of the program. Local data belong
to all the processes (every process has ils own value in them). Fmally, private data belong
to a Single specific process.

Note; These three sections must always appear in this order (GLOBAL, LOCAL and
PRh/ATE. when all of them appear)

O e c l a r a l l o n o f g l o b a l d a t a

G L O B A L

<declaration of datum>;

This section ol the program is optional. Global data, that is to say. the data that can be
used from any point of the program, are declared in this secllon. Therefore, a global
datum can be used for all the program's processes.

The section must start with the reserved word GLOBAL followed by a series ol
declarations of data finished with a symbol; (semicolon).

In general, all those data that establish general conditions of the game related to several
processes are declared as global dala. An example could Do we score obtained by the
player, that could be stored in the score global variatrfe. Thus, any process of the game
could increment it, if necessary.

D e c l a r a l i o n o f l o c a l d a t a

L O C A L
<declaralion ot <]aium>;

This sectioo o1 ihe pfograms is opiional. as the local data, that is to say. the data (hat alt
the program's processes have arc decinrod here, each one with its own values (such as
Iho X and y predelined local variables detormino Ihe coordinates of all the processes).
The section must start with the resemed word LOCAL followed by a series of declarations
of data finished with a symbol; (semicolon).

In general, the important information of Ihe processes, thai is to say, the data lo be
consulted or modified from other processes, are declared as local data.

The remaining energy of a process (a spacecraft, a shotgun, the leading chatacter. elc.)
could be an example. This infcrmaiion could be stored in the energy local vanaOle. so any
process can access or modify the energy ot the rest (for instance, on colliding with them,
energy could be subtracted).

Note; If a datum declared as local Is lo be used only inside one process, then the former
can be defined as a private datum.

D c c l a r a l i o n o f p r i v a t e d a t a

P R I V A T E

<decfaration of datum>;

These sections of the programs are opiional. Private data, that is to say. data that are
going to be used exclusively Inside a process, can be declared in this secim
This section can appear either in the mam program or in any other process of ihe program,
as the mam program is also considered as a process.

This section is defined just bolore ihe BEGIN cl the process thai is going to use these daia
and must start with Ihe reserved word PRIVATE lollowed by a series of declarations ol
dala linished with a symbol; (semicolon).

In general, all the data that are going to cciilam inlcrmation necessary only lor a process, as
well as those that can not be accessed from any other process, are declared as private
d a t a .

Those variables that are going to be used as counters in a loop, vanables lo contain angles
or secondary identifying codes, etc. ate normally defined as pnvate data.

Note: If you need to consult or modify a datum declared as prtvale from another process
(daium.idenlifier), then this datum will have lo be declared local fmside the program's
section LOCAL). Thus, all the processes will have the datum and every process can
access its value or ihe value that this datum has in another process.

Page 126

D e c l a r a t i o n o f a v a r i a b l e

(or, if you want to Initialise it)

< n a m e > = < n u m e n c v a i u e >

To declare a variable Inside a section, it will be enough to Indicate Its name inside thai
section. In this case, the variable will be initialised at 0 (zero).

If the aim is to initialise the variable at other values, the symbol = (assignment) will be put
after the name of the variable. The constant value at which the variable is intended to be
initialised will be put after this symbol.

A variable Is a cell (or position) of the computer's memory to which we refer by its name and
that can contain whole numeric values.

D e c l a r a t i o n o f a t a b l e

<name> [<numerlc value>]

(or, if you want to initialise the table)

<name> [<numeric value>] = <fist of numeric vaiues>

(or. If It is initialised without defining its length)

<name> [] = <list of numeric values>

To declare a table inside a section, It will be enough to indicate its name followed by the
length of the table in square brackets. In that case, all the positions of the table will be
initialised at 0 (zero).

The table's length is expressed as the maximum value of its index. That is to say. all the
tables range from the position 0 to the position Indicated in the square brackets in their
declaration. For instance, a table declared as my_table[91, will be a table of length 10 (of 10
positions, from my_table|0] to myjable[9]).

If the aim is to initialise the different positions of the table, it Is necessary to put the symbol =
(assignment) after the previous declaration and, after this symbol, a list of numeric values.

If the table Is initialised with a list, then it is not necessary to indicate the table's length In
square brackets, as the compiler will create a table with as many positions as the number of
values included in the list.

A table is a series of cells (or positions) of the computer's memory that is called by Us name,
appearing after it. in square brackets, the number of cell inside the table intended to be
a c c e s s e d .

For instance, if we declare a table as ttie tcllowing one:

my_table[]=33, -1, 6, -3, 99;

we will be declaring a table whose name is myjable and that has 5 cells (or positions), from
cell no. 0 to cell no. 4. In the previous declaration, cell 0 (my_table[0]) is initialised with the
value 33, cell 1 (my_table[1]) with the value -1, etc.

The language allows us to access cell 0 simply with the name of the table (myjable), as if it
was a variable, omitting the zero in square brackets that should appear after. That is to say,
for the compiler, myjable[01 will be the same as myjable (the first ceil of the table).

D e c l a r a t i o n o f a s t r u c t u r e

STRUCT <name> [<numeric value>]
<declaration of datum>;

To declare a structure inside a section, i t is
necessary to put the resen/ed word STRUCT
preceding its name. After it, the number of
records of the structure must be indicated, in
square brackets.

After this head defining the name of the structure
and the number of records, al l the data that
belongs to the structure and that will comprise its
fields, will be declared. Finally, the reserved word
END must appear to finish the declaration.

(or, it the structure is initialised) Ihls head defining the name of the structure
and the number of records, al l the data that

STRUCT <name> [<numeric value>] belongs to the structure and that will comprise its
<declaration of datum>; fields, will be declared. Finally, the reserved word

END must appear to finish the declaration.
E N D = < l i s t o f n u m e r i c v a l u e s >

T h e r e c o r d s ' n u m b i e r o f t h e s t r u c t u r e i s

expressed as the maximum records' number of the structure. That is to say, all the
structures have from record 0 to the record indicated in the square brackets. For instance, a
structure declared as STRUCT my_structure[9), will be a structure of 10 records (from the
record my_struclure[0) to my_structure[9]).

A structure is like an index card file (records), each of them with different written information
(fields). For instance, a structure in which we could include the initial and final positions of a
series of processes of a game could be as follows (an index card file with 10 cards, each of
them indicating the initial (x, y) and the final (x, y) of a process):

S i n U C T m o v e m e n t _ e n e m i e s [9]
x j n i t l a l :
y j n i t i a l ;
x _ fi n a l :
y j i n a l ;

E N D

This structure, that would be accessed with the
name movement_enemles, has ten records and
four fields in each record (two coordinates that
determine the in i t ia l posi t ion of the process
(x_initial ,yjinafl, and two that determine the
fi n a l p o s i t i o n [x j i n a l , y J i n a l]) .
fVlovement_enemy[0].xJinal would be used to
access the x final of the first enemy.

The language allows us to access the record 0 of the structure simply with the name of the
structure (movement_enemles.xJinal), omitting the zero in square brackets that should
come next. Ttiat is to say, for the compiler movement_enemies[0].x JInal will be the same
as movemen t_enemles .xJ ina l .

Each field of the struaure may be a variable, a table or another complete structure, with its
d i f f e r e n t r e c o r d s a n d fi e l d s .

Page 128

If the aim Is to initialise ttie structure (establishing the initial values ot its tieids in the
ditterent records), the symbol = (assignment) must be put after the reserved word END
followed by a list ot numeric values. It the structure is not Initialised in this way, all the tieids
will be put at 0 by default.

Keep In mind that, In order to Initialise a structure, the first values will be the values ot the
tieids of the first record, the following ones those ot the second record, and so on. For
Instance, it the following declaration is made:

STRUCT a[2]
b;
c [i] :

END = 1,2,3,4,5,6,7,8,9;

First, it must be taken into account that the structure a[] has 3 records (from a[0] to a(2])
and that there are three tieids (b, c{0] and c[1]) in each record. Then, the previous
declaration will initialise the structure in the following way:

a[0].b=1;
a[0] .c [0]=2;
a[0] .c [1]=3;
a[1].b=4;
a[1] .c [0]=5;

D e fi n i t i o n o f a l i s t o t n u m e r i c v a l u e s

The lists ot values are basically a series ot numeric values separated by commas and they
are used to initialise the values of tables or structures.

An example ot a list ot constants is shown below:

1.2, 3,4, 5;

But, besides this basic definition, the use ot the operator DUP is allowed to repeat a sen'es
ot constants a specific number ot times. For instance, the following list:

0,100 DUP (1,2, 3), 0;

It is a list ot 302 constants (0,1,2,3,1,2,3 1,2,3,0). That is to say, the operator DUP
(duplication) allows us to repeat the sequence appearing after it in brackets, the indicated
n u m b e r o t t i m e s .

It is possible to nest operations DUP. For instance, the following list:

2 DUP (88, 3 DUP (0,1), 99);

would be equivalent to:

88, 0,1, 0,1, 0,1, 99, 88, 0,1, 0,1,0,1, 99;

Page 129

Moreover, the omission of the operator DUP is allowed; rn other words, 2 DUP (0, 1) Is
oqjivslent 10 2(0,1).

The operator DUP is specially useful to initialise structures. If, lor instance, the aim is to
initialise the following 100 record structure;

STRUCT a(99] with the fields b initialised at 0, me fields c[9] at 1 (ail its
b; positions) and the fields d(9] at 2, the following list of
c[9); initialisation would be used,
m .

E N D 1 0 0 D U P (0 , l O O U P (l) . t O O U P (2)) ;

7 . 4 M a i n c o d e

E N D

The mam code of a program starts with the reserved word BEGIN,
<staiemont> • number of statements may appear. The mam code' finishes with the reserved word END,

This code controls the main process of the program, which initialises
the program, controls the loops of the menu and game, and finishes
the program.

An example of a mam code's block is now shown:

PROGRAM my.game;//Head o(f/ie program
G L O B A L

option; //Opiion chosen in the menu.

BEGIN //Beginning of the main code.

Set_mode(m640i480|: / / Ini t ial isat ion.
Set_fps(24, 4):
/ / . . . L o a d s l i l e s . s o u n d s , e t c .

REPEAT // Beginning main loop.

option=0: //Control loop of the options menu.
//... Initialises the options menu.

R E P E A T

//... Acr/ons to be performed In the menu.
IF (key(_onler)) optiomt: ENO//Playing Is chosen.
IP (KeyLssc)) options2: ENO//Finishing is chosen.
F R A M E :

UNTIL (optlon>0);
IF (optionsst) //// the playing option has been chosen.

//... Imlmiises regions, scroff, etc.
//... Creates the game processes.
//... Loop of game's control, waiffrtg torifs end,

E N D

UNTIL {op\ion~2): // End of the main loop.

Page 130

let_me_a!one(); //Finishes all the processes.

E N D / / E n d o l t h e m a i n c o d e .

//... Declaralion oUhe program's processes.

The end of Ihe main code's execution does not imf^ me end of the program's execution, as
it will continue if there are alive processes. If the aim is to force the end of the program
when the code finishes, it is possible to use, for instance, the let.me.atonef) function just
before the END that marks tfte main code's end. in order to oiiminate the rest ol tfte
processes itiat may remain alive.

The execution of the program can also be finished at any ol its points with the exitf)
luhctlon. which will automatically eliminate all the processes.

7,5 DeclaraRion of procesae*

PROCESS <name> (<list of parameters>)
<Oeclaratlon of private data>
B E G I N

< s i a t e m e n l > ;

E N D

A process must start with the reserved word PROCESS followed by its name and its call
parameter in brackets. The parameters are a list ol data in which the process Is going to
receive different values. The brackets are obligatory even if the process has no parameters.

After this head, a PRIVATE section, declaring data to be used by the process exclusively,
may be put optionally.

And finally, the process code, that is a sequence of statements between me reserved words
BEGIN and END. will be Specified

A process normally corresponds with a kind of obieci ot Ihe game, such as a spacecraft, an
explosion, a shot. etc. Inside the process' code, a loop (in which all the necessary values to
display this obiect, such as graphic, coordinates, etc.. will be established) is normally
implemented. Then, with the FRAME statement, the order to display the object with the
established atlribuies is given.

PROGRAM my game;
P R I V A T E

ld2;
B E G I N

id2=my_prooess(160.100)
/ / . . .

E N D

PROCESS my_process(x, y)
P R I V A T E

n ;

B E G I N

graph=1;
FROM n=0 TO 99;

x=x+2;
y=y+1;
FRAME;

E N D

E N D

As it can be noticed in this example, when a process is called, it returns its Identifying
code (that, in the example. Is stored in the private variable of the main program Id2).

If the aim is to implement a process In the style of the functions of other languages that
returns a numeric result, then It Is necessary to use the RETURN (<numeric value>)
statement, not using the FRAME statement inside the process, as this statement returns to
the father process (caller), returning the process' identifying code as a return value.

P a r a m e t e r s o f a p r o c e s s

The parameters ol a process are basically a list of data in which the process will receive
different information every time it is invoked (called or used) from another process.

The processes can receive parameters in the following types of data:

A predefined local datum (such as x. size, flags....).
A local datum defined Inside the LOCAL section.
A global datum defined inside the GLOBAL section.
A private datum which must not necessarily be declared inside the PRIVATE section.

In all these cases, it is understood that a datum may be referred to a variable, to a specific
position of a table or to an element inside a structure.

As an example of the different types of parameters, a program with a process that receives
five parameters different from the types respectively indicated in the previous list is now

PROGRAM my_game;
G L O B A L

scoresO;
L O C A L

energysO;
B E G I N

my_process(1,2,3,4);
H ...

E N D

PROCESS myj3rocess(x, energy, score, n)
B E G I N

n . . .
E N D

II is nol necessary io declare the n private variable, but it could be declared m the fdlowing
way (after the head of the process, and before its BEGIN):

P R I V A T E

n ;

Note; Receiving a parameter (such as the global variable score) In a global data is
equivalent to makirtg the assignment (seore=3;) and then, calling the process.

7.6 List of statements

The types of statements existing in the DIV language are shown in this section.

The statements afways appear as a set. from none (which makes no sense) to as many as
necessary. All the statements will sequentially be executed (the first one, the second one,
me third one...), unless the statements mat can control the program's flow (control, loops
and break statements) determine some exceptions.

7.6.1 Assignment s tatement

The assignment statements are used to calculate expressions and to assign them to a
d a t u m .

<reference to a daiimi> s <expression>;

The datum In which the result of the expression is going to be stored must be indicated,
followed by the symbol = (symbol ot the assignment), as well as Ihe numeric or logical
expression to evaluate when the statement Is executed. After mis statement, the symbol ;
(semicolon) must always be put.

In an assignment statement it is only allowed to assign values to objects such as any kind ot
varlabtes. to a position of a table, or to an element ot a structure.

II IS not possible to assign a value Io a constant, to a function or to a process or. in
general, to any numeric or logical expression.

Now, a program with several assignments is shown.

PROGRAM my game:
B E G I N

x = x-f1;
angle s <angle'3)/2-pV2;
size = (x+y)/2:
z = abs(x-y)'3-pow(x. 2);
/ / . . .

E N D

Page 133

This is the basic form of the assignments, even if there are other symbois of assignment
that, instead of assigning a new value to the referred datum, modify its value.
These are the symtx)ls of operative assignments;

+= Adds to the datum the result of the expression
Example: x=2; x+=2; is equivalent to x=4;

-= Subtracts from the datum the result of the expression
Example: x=4; x-=2; is equivalent to x=2;

*= Multiplies the datum by the result of the expression
Example: x=2; x*=3: is equivalent to x=6;

/= Divides the datum by the result of the expression
Example; x=8; x/=2; is equivalent to x=4;

%= Puts in the datum the remainder of dividing it by the result of the expression
Example: x=3; x%=2: is equivalent to x=1;

&= Performs an AND (binary and/or logical) between the datum and the result of the
expression, assigning it as a new datum's value

Example: x=5; x&=6; is equivalent to x=4:

1= Performs an OR (binary and/or logical) between the datum and the result of the
expression, assigning it as a new datum's value

Example: x=5; xl=6; is equivalent to x=7;

''= Performs an exclusive OR (XOR binary andfor logical) between the data and the result of
the expression, assigning it as a new datum's value

Example: x=5; x*=3: is equivalent to x=3;

»= Rotates the datum to the right as many times as indicated by the result of the
expression (each rotation to the right is equivalent to dividing the datum by 2)

Example: x=8; x»=2: is equivalent to x=2;

«= Rotates the datum to the left as many times as indicated by the result of the expression
(each rotation to the left is equivalent to multiplying the datum by 2)

Example: x=2; x«=2; is equivalent to x=8;

Within the category of assignment statements, the increments and decrements of a datum
are also allowed. For instance, if we wanted to add 1 to the local variable x we could do it
either with the x=x+1; or x+=1; statements, or with the operator of increment: x++: or ++x;.

IF(<concliilon>)
<s ta tement> ;

IF (<condltion>)
< s l a t e m e n t > ;

E N D E L S E

<s ta lement> ;

E N D

(or)

The IF slalemeni Is used to execute a block ol staiemonis optionally, wnen a condition Is
complied. In the second alorementioned variant, another block ol statements will also bo
executed (inside the ELSE section) when the condition is not complied.
A program with several IF statements is now shown.

PROGRAM my_ganie:
B E G I N

IP Prert.ese))
exilCQoodbyl', 0);

E N D

IF (»100ANO x<220)
y a y * 4 ;

E L S E

y=y-8;
E N D

IF (sipe>0)
size=size- i :

E N D

IF(emef(S)>1000)
z=1;

E L S E

2=- i ;
E N D

/ / . . .
E N D

It is possible to nesi IF statements with no limits. That is to say. more IF statements can be
put inside the part that is running when the condition is complied (IF part) or inside the one
that is executed when the condition is not complied (part ELSE).

7 ^ S W r r C H t t a t e m e n t

SWITCH {cnumeric expiessioro)
CASE <range of values>:

< s t a l e n i e n t > ;

E N D

E N D

(or)

SWITCH (<numenc e<press>on>)
CASE <range of values>:

< s i a l e m e n t > ;

E N D

D E F A U L T :

< s i a t e m e n t > ;

E N D

E N D

A SWITCH statament is matle up wltn a series o1 CASE sections and, optionally, a
D E F A U L T s e c t i o n .

PROGRAM my_gaiTie;
B E G I N

SWITCH (x)
C A S E 1 :

*= •1 ;
E N D
C A S E 2 :

x = - 2 ;
E N D

C A S E 3 :
x = - 3 :

E N D

C A S E 9 9 :
x » - 9 9 :

E N D
D E F A U L T :

x=0:
E N D

E N D
E N D

Wnen a SWITCH statement is executed, the expression is
tirst evaluated and tnen. if Itte result is wittiin the range ot
values included in ttie first CASE section, its statements will
b e e x e c u t e d a n d t h e s t a t e m e n t w i l l I m i s h . I I t h e r e s u l t o f t h e

expression is not in the lirst CASE, it will be looked for in the
second, third, etc. CASE. Finally, if there is a DEFAULT
section and the result of the expression has not coincided
with any ot the CASE sections, then the statements of the
D E FA U LT s e c t i o n w i l l b e e x e c u t e d .

The SWITCH statement of this program will change the sign
of the X variable if it is equal to 1. 2. 3 or 99. Otherwise, the
statement will put the variable at 0.

R i n o e a l v a l u a a o f a s e c t i o n C A S E

A value, a range ol values minimum .. maximum (it is
important to separate these values by two dots, not by
three), or a list of values and/or ranges separated by
commas may be specified In a CASE section. For ihstance.
the prev ious s ta tement cou ld hove been expressed as
f o l l o w s :

SWITCH (x)
CASE 1..3,99:

x = - x ;

E N D

D E F A U L T :
x = 0 ;

E N D
E N D

Page 136

Once one ol the CASE sections of a SWITCH statement has been executed, no more
sections will be executed, even 11 Ihey also specily the result ol the expression, for
instance, in the following statement:

SWITCH (2+2) x=x*1: section will be executed and then, itte statement
C A S E 3 . . 5 : y = y - t : s e c t i o n w o n ' t b e e x e c u t e d a s , e v e n

xsx*1: '' 0' "t® evaluotod expression (4) is included in It. it
END IS a lso inc luded in the prev ious sec t ion , (as 4 is w i th in the
C A S E 2 . 4 , 6 : ' a n s ® 3 . , 5) .

y = y - i ;
END l< IS ho t necessary lo a r range the CASE sec t ions accord ing

END '® l ^® i t va lues (sma l le r to l a rge r, o r l a rge r to sma l le r) , bu t i t
is indispensable that the DEFAULT section (if it exits) is the

last section. There can only be one DEFAULT section.

It is possible lo rwsi SWITCH statements with no limits. That is lo say. new SWITCH
statements (and any other kind of statement) can be put inside a CASE section.

7.6.4 WHILE statement

WHILE (<coridilion>) ̂ ^® WHILE statement implements a loop Thial is to say. it
<stalement>; capabi® o' repeating a group of statements a specific

n u m b e r o f t i m e s .

E N D
in order to implement this loop, the condition that has lo be
compiled tor the group of statements to be executed must

be specitied in brackets, after the reserved word WHILE. All the statements that necessarily
have to be repeated will be put after the specification cl this condition. Finally, the end of the
loop will be marked with the reserved word END (it doesn't matter whether more words END
appear inside ihe loop when they belong lo Internal siaiemenis of that loop).

When a WHILE statement is executed. Ihe specified veillication will be carried out. If Ihe
result is true, the intemal statemenis will be executed. Otherwise, the program will continue
from the END. that marks the end of tho WHILE.

If Ihe intemal statements have been executed (what Is called to make a loop's Iteratloni.
the condition will be venfied again. II it is true, another llerallon will be made (the intemal
statements will be executed again). This process will bo repeated unili it is venlied that the
cond i t i on o f t he WHILE i s t a i se .

if the condilion turns to be false diroctly while a WHILE sialement Is execuled. then the
ihiernal statements will never be executed.

PROGRAM my game;
B E G I N

x=0;
WHILE (x<320)

x=x+10:
FRAME;

E N D
E N D

in this example, the x ipcal variable (x coordinate of Ihe
process) will be put at zero and then, providing that x Is less
than 320. 10 wi l l be added lo x and a FRAME Mil be
pariormed.

Page 137

A BREAK statement inside a WHILE loop will immefliateiy linish It. continuing the program
from the statement next to that loop.

A CONTINUE statement inside a WHILE loop will force the crogtam to venty the initial
condition immedialety and. II II is true, to execute again the internal statements from the
Beginning (alter the WHILE). 11 the condition turns to be false, the CONTINUE statement will
finish Itie loop.

The internal statements ol a WHILE loop can be as many as desired, and ol any kind,
ot>vlously including new WHILE loops.

7 . 6 . 5 R E P E A T s t a t e m e i t t

The REPEAT ... UNTIL(...) statement Is very similar to the
WHILE statement and also implements a loop.

It must start with itie reserved word REPEAT, followed by
the statements lhat you want to repeat one or more times,
and the end of the statement will be determined by putting

followed by the condition lhat has to Be complied tor the

When a REPEAT siatemenl is exocutod. the internal siatements (those placed between the
REPEAT and the UNTIL) will bo executed first and then, the condiiioh spocitled in the
UNTIL will bo verified, it n is still talse, the internal siatements will be executed again. The
process will be repeated until ihe condilion of the UNTIL turns to be true, continuing then
the execution ol the program after this statement.

Every lime that the internal siatements are executed, a loop's Iteration has been
performed. The REPEAT .. UNTIL(> (the <condltlon> Is com.plled) statement will always
execute the internal statements at least once, as It always venfies the condition alter their
e x e c u t i o n .

In this example, the x local vanabie <tr coordinate of the
process) will Be put at zero and then. 10 will be added to x
and a FRAME will Bo performed until x Becomes a numtier
Bigger than 320.

A B R E A K s t a l e m e n t I n s i d e a R E P E A T l o o p w i l l
Immediately finish It. continuing the program from the
following statement to lhat loop.

A CONTINUE statement Inside a REPEAT loop will toice the program to make the
verification ol the UNTIL immediately and, it it Is true, it will execute again the internal
statements from the Beginning (alter the reserved word REPEAT). If Ute condition turns to
be true, the CONTINUE statement wiil linish the loop.

The Internal statements ol a REPEAT loop can Be as many as desired, and of any kind,
obviously Including new REPEAT loops.

R E P E A T

< s l a t e m e n l > ;

UNTIL (<cQndiilon>)

t h e r e s e r v e d w o r d U N T I L

s t a t e m e n t t o fi n i s h .

PROGRAM my_game:
B E G I N

x=0;
R E P E A T

x s x * 1 0 ;
F R A M E ;

UNTIL ()o320)
E N D

Page 139

7 ^ 6 L O O P (U t e c n e n t

l_OOP The LOOP slatomeni irrplemenis an infinite loop. Thai is
<statemant>; ' ' Indellnlleiy repeats a group of statements.

g f j Q i n o r d e r t o i m p l e m e n t t h i s l o o p , I t i s n e c e s s a r y t o s t a r t w i t h
the reserved word LOOP, fo l lowed t>y the statements
intended to be repealed continuously, pulling the reserved
w o r d E N D a t t n e e n d .

When a LOOP ... END statement is found in a program, ail the internal siaiements of iMal
loop will repeaterSy be axeeuled from inis position.

In order to finish a LOOP loop, it Is possible to use the BREAK statement which, on being
executed inside a loop of this lund. will force the program to continue from the END.

The CONTINUE statement inside a loop will finish the current iteration and will start the
lollowinp one (the program will go on running after the reserved word LOOP.

In inis example, the x local variable (x coordinate of the
process) wiil be put at zero and then. 1 will be added to it
and a FRAME will continuously be performed. If the ESC Key
is pressed, the BREAK statement will be executed, finishing
ihe LOOP loop.

The iniemal slatemenis of a LOOP loop can l>e as many as
desired, of any kind, obviously including new LOOP loops.

PROGRAM my_game;
B E G I N

xsO;
L O O P

IF (keyLesc))
BREAK;

E N D

* = x * 1 ;
FRAME;

E N D
E N D

7 . 6 . 7 F O R s t a t a m c n t

The FOR slatomeni (replica ol
t h e C l a n g u a g e) a l s o
implements a loop. After the
r e s e r v e d w o r d F O R . t h r e o

difterent parts must be specified
in brackets, separated by

symbols : (semicolon). These three parts, that are optionai (they can be ominedl. are the
following ones;

FOR (<inj | ial isat ion>; <condil lon>; <increment>)
< s l a t e m e n t > ;

E N D

Initialisation An assignmeni statement is normally codified in this pan. This kind ol
statement establishes the Inlilal value of the variable that is going to be used as a
counter of (he loop's iterations (each execution of Ihe inner group of sratemenls is called
a loop's Iteration). The assignment statement x=0, that would put the * variable at zero at
the beginning ol the loop (value for the first iteration), is an example.

Page 139

Condition. A condition Is specified In ttils part. Just before eacti Iteration, this condition wiil
be checked and, if it is true, the group of statements wili be executed, if the condition is
false, the FOR loop will finish, continuing the program after the END of the FOR loop. An
example of condition can be x<10. that would allow the inner group of statements to be
executed only when the * variable is a number less than 10.

Increment. The increment of the variable used as a counter for each Iteration of the loop
Is Indicated in the third part. It Is normally expressed with an assignment statement. For
Instance, the x=x+1 statement would add 1 to the * variable after each iteration of the loop.

The group of Inner statements of the loop that are going to be repeated sequentialty while
the condition of continuance (second part) Is complied, must appear after the definition of
the FOR loop with its three parts. After this group of statements, the reserved word END will
determine the end of the FOR loop.

When a FOR statement appears In a program, the part of the Initialisation will be executed
first, checking the condition. If it Is true, the Inner group of statements first and. the part of
the Increment then, will be executed, being the condition checked again, etc. If. before any
Iteration, the condition turns to be false, the FOR statement wili immediately finish.

A program with a FOR loop containing the three parts mentioned In the previous sections Is
n o w s h o w n .

PROGRAM my_game;
B E G I N

FOR (x=0 ; x<10 ; x=x+1)
// The Inner statements will be put here.

E N D
E N D

This loop would first be executed with the
X variable equal to 0. the second one
equal to 1 and the last variable equal
to 9. The part of the Increment would be
executed after this Iteration, becoming x
e q u a l t o 1 0 . T h e n , o n c h e c k i n g t h e
condition of continuance In the loop (x Is
less than 10). If It Is false, the loop will
fi n i s h .

As It has been mentioned, the Ihree parts In tlie definition of the loop are optional. If the
t h r e e w e r e o m i t t e d :

Then, this loop would be equivalent to a LOOP ... END loop.

Moreover, several parts of Initialisation, condition or Increment can be put In a FOR loop,
separated by commas. At first, all the Initialisations will be executed. Then, all the conditions
of continuance will be checked (if any of them turns to be false, the loop will finish). The
Inner statemenfs and. after every iteration, all the increments, wlii finally be checked.

PROGRAM my_game;
B E G I N

FOR (x=0, y=1000; x<y; x=x+2, y=y+1)
// The inner statements will be put here.

E N D

E N D

A BREAK statement Inside a FOR loop
will immediately finish it. continuing the
program from the following statement of
this loop.

Page 140

A CONTINUE statemenl InsiOe a FOR loop wiU force to execute the part of the incremeni
aireclly and tfien, to venfy the condition Of cwiflnuance. It it is true, then the inner
statements will be executed again from the tieginnlng. If the condition turns to be false, then
the CONTINUE statement wili finish the FOR loop.

A FOR loop is practically equivalent to a WHILE loop, implemented in the tollowing way:

PROGRAM my_game;
B E G I N

x=0;
WHILE (x<10)

// The inner statements will be put here.
x=x+1;

E N D

E N D

W i l h t h e o n l y e x c e p t i o n t h a t a
CONTINUE statement, inside this WHILE
loop, would not execute the part ol the
increment, while it would do so inside a
FOR loop.

If. alter the execution of the initialisation,
■he condition turns to be false directly
inside a FOR loop, no inner statements
will eier be executed.

The inner statements of a FOR loop can be as many as desired, of any kind, obviously
including new FOR loops.

7.6.S FROM statement

FROM <varl8ble> = <numeric value> TO <numenc value>;
<s la iemen t> ;

E N D

(or)

FROM <variabtB> = <numeric value> TO <nometic value> STEP <numeric value> ;
<s ta tement> ;

E N D

The FROM statemenl is the last one implementing a loop. For that, a variable of ihe
process itself ihat can be used as a loop counter Is needed.

The reserved word FROM must be put before Ihe statements that will comprise the inner
group of statements. This word will be foBowed by the name ol the counter variable, the
symt>ol of assignment (=). the Initial value ol the vanabfe. the reserved word TO and,
finally, the final value of the vanable. The symbol ; (semicolon) must be put after mis
declaration of the loop FROM.

The inner group of statements that Is intended to be repeated a specific number of limes is
put after this head defining the conditions of the loop. Finally, the reserved word END will be
put.

The first iteration wiil be performed with the irtitial value in the variable used as a counter.
After this iteration, 1 wili be added to this variable (if the initial value Is less that the final
value). Otherwise 1 will be subtracted from it. After having updated the value ol the

Page 141

vanable, it is necessary to pass to the following iteration, provided tlial the value of this
variable lias not reached (or exceeded) the final value of the loop.

The reserved word STEP rnay be put as a second meaning of the FROM statement, aftor
the initial and final values of the statement, This woid must be followed by a constant value
indicating the increment of the counter variable aftor overy iteration of the loop, instead of 1
or -1. which are the increments that will be performed by delault if the STEP declaration is
o m i t t e d .

The following example shows a program witfi two loops FROM: one without STEP
declaration (with increment or decrement by default) and the other with it.

PROGRAM my_gama:
B E G I N

FROM *=9 TO 0;
I I I n n e r s t a t e m e n t s . . .

E N D
FROM x=0 TO 9 STEP 2;

/ / i n n e r s t a t e m e n t s . . .

E N D
E N D

The first loop will be executed 10 times with the x
variable. Its value will range between 9 and 0 in the
diffcreni iterations. By default. I will be subtracted fiom
the variable each time, as the initial value (9) Is bigger
than the final value (0).

In the second loop, constant 2 is indicated as the
increment of the variable- Thus, the loop will be executed
5 times with the x variable, wtiose values wilt be 0. 2. 4, 6
and S. respectively, in the consecutive iterations. As it can

be noticed, no iteration will be performed with x being equivalent to 9. even if it is the loop's
final value. By delault. it 2 had not been specified as STEP of the loop. 1 would have been
added to the x vanable attereach iteration.

PROGRAM my_game;
B E G I N

FOR (x=9; x>=0; x=x-1)
/ / I n n e r s t a t e m e n t s . . .

E N D
FOR (x=0 : x<=9 : x=x+2)

/ / I n n e r s t a t e m e n t s . . .
E N D

E N D

A loop FROM can always be performed with the FOR
statement, as it is now shown (with two loops equivalent
to those of the previous example).

Note: The Initial and final values of a loop FROM
m u s t b e d i f f e r e n t .

• It the initial value Is less than the final value, it Is not possible to specify a negative value
i n t h e S T E P d e c l a r a t i o n ,

• If the Initial value Is bigger than the final value, it Is not possible to specify a positive
v a l u e i n t h e S T E P d e c l a r a t i o n .

A BREAK statement inside a loop FROM will Immediately linish it. continuing the progrom
from the lollowing stalomont to this loop (otter tho END).

A CONTINUE statement inside a FROM loop will force the program to increment the
variable used as a counter immediately and then, it tne final value has not been exceeded,
to start the following iteration.

The statements inner lo a loop FROM may be as many as desired, of any Idnd, obviously
Including new loops FROM.

Page 142

7 . 6 . 9 B R E A K S t a t e m e n t

A BREAK statement Inside a loop will immediately llnish it, continuing the program Irom ttte
lollowing statement to that loop. This statement can only tte put inside the following loops:
WHILE, REPEAT. LOOP. FOR or FROM.

A BREAK statement wilt make the program continue its eirocutlon alter the END or the
UNTIL of the loop closer to the statement.

II there are several nested loops (one inside another), the BREAK statement witl only exit
the innermost loop.

PROGRAM my game;
B E G I N

L O O P
R E P E A T

IF (keyLesc)) BREAK; END
I I . . .

UNT IL (x=0) ;
I f . . .

E N D
E N D

In this example, the BREAK statement will exii
the REPEAT ... UNTIL (when the ESC key is
pressed), but not the LOOP ... END

Important: The BREAK statement ts not valid
to finish IF. SWITCH (or the CASE sections ol
this statement), or CLONE statements.

7.6.10 tCONHNUE statement

A CONTINUE slaterttent inside a loop will force the program to finish its current iteration and
start the following iteration. We call iteration to each execution ol Ihe set ol statements
internal to a loop (Ihe statements between a LOOP and its END. for instance). This
statement can only be put inside one ol the following loops:

L O O P . . . E N D
A CONTINUE inside this loop will jump to the LOOP.

FROM .. = ..TO .. STEP ..;... END
A CONTINUE inside this loop will perform Ihe increment (STEP) and. if Ihe value indicated
in the TO has not been passed. Ihe program will continue at Ihe beginning ol the loop.

REPEAT. . . UNTIL(. .)
A CONTINUE inside this loop will jump to the UNTIL.

WHILE (..)... END
A CONTINUE inside this loop will jump to Ihe WHILE.

F O R { . . E N D
A CONTINUE inside Ihis loop will perform Ihe Increment and Ihe comparison. If Ihe latter is
true, the program will continue at the beginning of the loop. But if it is false. Ihe program will
c o n t i n u e a f t e r t h e E N D o f I h e F O R .

If there are several nested loops (one Inside another). Ihe CONTINUE statement will lake
effect only In Ihe inner loop.

Page 143

PnOGHAM my.gama;
B E G I N

FOR (x=0,y=0;*<10:i(»*)
IP (x<5) CONTINUE:

E N D

y * + :
E N D

E N D

In this example, alter the whote loop has been executed, x
will be equal to 10 and y will be equal to S as. providing
mat X is less than 5. the CONTINUE statement prevents
the y**; statement Irom being executed.

ImpoiUnI: The CONTINUE statement Is not vaid
InsKie IF. StWITCK (or the CASE sections of this
statement), or CLONE statements (as these
statements do not implemeni loops and. therefore,
they do twl make iterations).

7.6.11 RETURN Statement

The RETURN statement immeOiatety Imishes the current process, as if the END of its
B E G I N w a s r e a c h e d .

When this statement is included in the mam code, it will finish the current process. But if
there are alive processes, they will go on running. For instance, the exlt() function can be
used to finish a program and all its processes.

PROGRAM my.game;
B E G I N

L O O P

IF {key(_esc))
RETURN;

E N D

FRAME;
E N D

E N D

A RETURN Inside a process will finish it. killing this
p r o c e s s .

In this example, the RETURN statement will be executed
by pressing the ESC key. linishing the program.

U s e o t R E T U R N t o r e t u r n B v a l u e
II is possible to design processes with a performance similar to the funclicns of other
programming languages, that receive a series of parameters and return a value. For
instance, a process receiving two numotic values and returning the biggest one.

For that, this statement must be used with the lollowtng syntax:

RETURN(<exRression>)

tl is also important not to use the FRAME siaiemeni inside the process, as this statement
will immediately return to the catling process Whon the compiler finds the FRAME
statement inside a PROCESS, it directly classes it as a process, ruling out its hypothetical
use as a tunc t lon .

The example proposed belore is shown next: an implementation of the mathematical
tunctlon max that returns the greater of its two parameters

Page 144

PROGRAM my_game;
B E G I N

xsmax(2,3)Mnax(S.4);
E N D

PROCESS max(a.b)
B E G I N

iF(a>b)
RETURN(a);

E L S E

RETURN(b);
E N D

E N D

Alter the execution ol this program, the * variable of the
main process will be equal lo 8 (3»5).

Important: By default, if the RETURN statement is
used without the expression In bracltels or the
FRAME statement Is used In a process. Its return
value will be Its Identifying code of the process.

^

7 . 6 . 1 2 F R A M E a t a l e m e n i

The FRAME statement Is an essential pan of the language. A program's mechanics
descrbed below in general terms:

• The main program starts its execution. This process may create more processes
(objects of the game) at any point. All the processes may be finished at any moment,
and they may create or eliminate other processes.

• The games will always be displayed frame by frame. In each frame, the system will
execute ail the processes existing at that moment, one by one. until each one executes
the FRAME statement, which will indicate that it is ready lor the next display (frame).

• In the preparation of each trame, all ihe processes will be executed in the established
prionty order (the priority local variable of the processes determines this order).

PROGRAM iny garae;
B E G I N

my.processO:
my processi);
L O O P

IF (i<ey(_asc))
my second_process();

E N D
F R A M E ;

E N D

E N D

PROCESS my processQ
B E G I N

L O O P
FRAME;

E N D
E N D

PROCESS my_secoiid_process()
B E G I N

L O O P
E N D

E N D

Therefore, this statement is similar to an order for the
processes to be displayed.

It a process starts its execution and it neither linishes
nor executes this statement, then Ihe program will
become blocked, as there Is a process that is never
ready for the next display. Therefore. Ihe system
won't be capable ol showing the lollowing frame.

|ri this program, the main process (my_game type
process) creates other two processes (my_proce$s
r/pe). From that moment, the three processes will
continuously be executed, each one to their FRAME
statement. But it the ESC key is pressed, then the
m a i n p r o c e s s w i l l c r e a t e a n e w p r o c e s s
(my_second_proce8s type) tha t w i * remain in a
LOOP loop indelinileiy. without executing any
F R A M E . C o n s e q u e n t l y , I h e p r o g r a m w i l l b e
interrupted (Ihe system will report such a situation
a l t e r t e w s e c o n d s : s e e t h e m a x _ p r o c e s s , t l m e
global variable).

Page14S

Basically, all trie processes that cotrespond with objects of a garro construct a loop Inside
which, every frame establishes all Its display values <x, y, graph, size, angle,...) executing
t h e n t h e F R A M E s t a t e m e n t .

S y n c h r o n i s a t i o n o f p r o c e s s e s
II Is possible to use this statement with the foUowing syntax:

FRAME(<percentage>)

By putting In brackets a whole percentage, from 0 to 100 or bigger, alter the reserved word
F R A M E .

This figure will indicate the percentage of the lotlowing frame, completed by ihe process.
That is to say. the absence of this percentage Is eguivaient to putting FRAME(tOO) (100%
of the work previous to the (oflowing display has been completed by the process).

For instance, if a process executes the FRAME(25) statement in a loop. It will need to
execute it 4 times before It is ready for the next display (as 4"25ti Is the lOCii).

On the other hand, if a process executes the FRAME(400) statement Inside Its loop, alter its
first execution. It will have completed 400% the display. Therefore, even after the display, a
completed 3001° of display will still be missing. For that, in the preparation of the following 3
frames the system won't execute this process, as it is ready lor the display. Then, this
process would be executed just once every 4 frames (unlike the example of the previous
paragraph, in which It was executed 4 times every game's frame).

The processes won't reach the next display unless they give 100%. at least For instance, if
a process always executes FRAME(80) staiemenis. It will execute them twice before the
first dispiay, so it will have completed 1601« (2*60°°) the display. Thorelore. It will have
precompleted 60% (160%-100%| for the next display. For that reason, in the second display
It will only regulre a FRAME(60) statement to be displayed, as this 60°°. plus the remaining
60% of the first display, will be equal to a 140°° completed. Therefore, it will Immediately De
displayed .and a 40°° will be even left to prepare Ihe next frame.

Note; A FRAME(O) statement completing a 0% of the next display only mafres sense
In the two following cases:

• It can be a way to force tfie system to execute In this point Ihe rest of the
processes having the same prfority as the current one and. after them, me system
will execute the latter again.

• It can also be a way to Initialise luncbons suctt as g«t_IdO or colIlsJonO, as they
return some speciTic values for every frame. If the aim is to obtain values again. It
Is possible to execute a FRAME(0) statement that wlfl be inierpreled as a new
frame by these functions.

Page 146

if I36Bd

;sj!{ le 1SE3I le 'esuas
sii)!i s'leuj 0) SUI93S 'epos sues eut Suiinssxa pue siudejQ
siuEs 9in 'seieuipjoos suies aui uiiv. sassasoid gesiiuspi omi
SAFM 015uipu9iui 'ing ONH Bu® 3N010 spJOiw 9mi uooMieq
siu9uiaieis Buiiind ioomiim posn sq uss loauioit'is siqi

' sauop, ivieu eieeis osie

Aeuj .S9UOI9, iSj!) Oql icqi lunosse 0|U! 9)|Gi oi lOussesau
S! 1! se 'dooi V 9p!SLJ! JO i^iiBiiuenbes lueuieicis 3N013
9m Suisn 01 souioo || uoqiv> u9>jEi eq isnui ejBO

peieajo aq nm leujSuo oql)0 seidoo o«ai /|uo 'ojoiojoui
(01°^ 'Ol=<) leqioue aiesjo jim jsiigi sqi pue

(QsA '0L°<) ui 9U0 aieaio i|iw <osX'o») ssaoojd |eu|5uo ouj.

:AeM 6uim0||0| aq) ui '9Sue|Su! JO) papmisuoo uoog OAeq ppoa
ujEjSojd 9qi 'ssaoojd isuiBuo 9qi to sagdoo z ^|ub aieajo oj.

'(01=^ '01°') u! ssaoojd Msu aui aieojo iim auo puooos aqi
pue '(oi°A '0=<) u! ssaoojd msu e aieajo him (auo lEujBijo
sqi) auo isjii am lueuieiBis 3N010 puooas am ainoaxe
1I!M sassaoojd omi essqi •(o='<'Ol=x) uj jDulO em pue
(0=X'o=*) u" auo tsassaoojd z 9q i|im 9jaui 'sngj. paieejo aq
!l!M ssaoojd M9U e 'luaujaieis 3N0~I3 isji| pmi Buginoaxa uo

(paisadxa
uaaq 9Aeq piaoo i{ se 'z lou pue) ssaoojd uiEUJ aqi jo saidoa
E areajo iiiM SIU9UJ91BIS 3NOnO Z sqi 'aiduiexa siqi u|

aN3

"II
QNB

QNa

3N013

;oi+x=x
3N013

:o=A
:o=x
••■//

NIOBS
taujeB'Xuj nvusotid

□Ka
... II

ONB

:oi+/=A
3N010

aN3

;oi+x=x
aNOlo

;o=^
Icpx
... II

Nisaa
laiueS Am nvuooud

•jEfoiis {isouw) sassaoojd ovy oiug ii SupiAio 'ssaootd e |o seaidaj aieaJO oi pasn s> waujaiets stqi

luBu aqt 01 joqpet sgaxid oOl paoeid aq iiw 'ssaooJd
wau am UI 'lEMl aieuipjooo x eqi |0 uoiidaoxa eqi qiiw 'saiqeueA si{ he ui saniBA ames
aql pue siqdejB eujes aqi uim 'auo jauuoi eqi oi icoiiuapi 'paieojo aq mu ssaoojd meu v

aN3

;ooi*x=*
3N010

:|U8Uja|Eis BuiMOliO) aqi sainoaxa '(qdeiB) oiqdEjB 0<|i9ed$
e qiiM pue (X 'X) soicuipjooo onioads uiim 'uieiBojd aqi |0 ssaoojd Aue |i 'soueisui joj

euo ijajjno aqi ui lOu inq ssaootd mou aqi ui
papoaxa aq A|uo i|im qnS pu® 3N013 spjoM pa/uasaj aqi
uaaMiaq luauiaieis aqi icqi qoiidaoxa aqi qiiAv 'auo luottno
aqi 0) |EO!iuap! sseootd mou b saiesjo luauiaieis sgqi

QNS

; <|ueuje|Eis>

BNOIO

iu«us)sts aNono cr9"i

The DEBUG siatemeni will call the interactive debugger when ii is eiecuted. II is normally
used 10 debug programs, that is to say. to hnd possible errors of the programs. On some
occasions, it is normally put in the foiiowing points:

• Whore you want to verity that a pad of the program has done what was expected. After
the execution of that pan, DEBUG wiii cail the debugger, from which it is possible to
chock ail the active processes and the value ot aii their variables.

• When you are not very sure whether something can happen in a program, you can put
this statement in that point to report you whether what wo are expecting actuaiiy

This statement is only used temporanty. until the error that is lookeO lor is found. From that
moment, the statement won't be necessary. Thus, ii can be removed from the program
since i t has no add i t iona i e f fec t .

When this statement is executed, a dialog tiox appears, offering us the foiiowing options:

• To disable the DEBUG statement, preventing it from being activated in this execution ot
the program.

• To stop the program and enter the detjugger, to be able to examine all the processes
a n d t h e i r v a r i a b l e s ,

• Or to finish the execution of the program immediately, returning to Its edition in the
windows' graphio environment.

Moreover, if the escape key ESC is pressed in that box, Ihe DEBUG siatomeni will simply
be Ignored, and Ihe program will continue to be executed as usual.

Note: When a program is executed from Uie windows' graphic eitvironmenl. (he
debugger can be called at any momertt by pressing the F12 Key,

On invoking ihe debugger m this way, the program will always be inlerrupled just before
stanmg the processing ot a new itame. Ail ttie processes to be executed will appear before
the next display.

happens.

B E G I N

I I . . .

PROGRAM my_game;

IF (xcO)
DEBUG;

E N D

In this example, it is verified that, in a specitlc point ot Ihe
program, the x coordinate ot the process is not a negative
number (less ttian zero), if this happens, the debugger will
be called to find out why it has happened.

Page taa

Chapter 8
Program Creation

Page 149

CHAPTER 8: Creating Programs. Advanced Concepts

The last concepts essential to create programs in OIV Games Studio are described in this
last chapter. For lurther information, consult the appendixes and the help hypciiext inside
the graphic environment.

8.1 Types of processes

The blocks of the programs starling with the reserved word PROCESS determine the
performance of a specific process type. Then, when ttie program is executed, any number
of processes of this type will be able lo exist at a specific moment. Each of these processes
will have a different Identifying code. Out all of them are of the same type.

PROGRAM my.game;
B E G f N

I I . . .

E N D

PROCESS spacecraftO
B E G I N

I I . . .
E N D

PROCESS enemyO
B E G I N

I I . . .

E N D

PROCESS shotO
B E G I N

I I . . .
E N D

In this example, lour types c1 processes are defined:
my.game (the type of the program's initial process),
spacecraft, enemy and shot.

The number of processes of each of these types existing in
the game depends on the number of calls made to these
p r o c e s s e s .

All the spacecraft type processes will always execute the
statements defined In the PROCESS spacecrattf) of the
p r o g r a m .

A ' p rocess t ype* i s a numer i c code re fe r red to t he
n a m e o f t h e P R O C E S S t h a t d e t e r m f n e s h o w t h e

process works during the game. This numeric code can
be obtained with TYPE <ttame.ot.lhe, proces$>.

TYPE Is an operator delined in the language that, applied
to a process name, returns this numeric code.

For InsIarKe. TYPE spacecratl will bo oquivalonl lo a specific numeric conslani and TYPE
enemy will be egulvaleni to another one.

All the processes have a local voiinblo containing this numeric code, which Is:

r e s e r v e d . p r o c e s s . l y p e

Page 150

W h y I s t h e p r o c e s s t v o e t o r ?
Ths process type is used tor several things, as mentioned below:

• For the get_id() (unction that receives a process type (tor instance, get.ld(TYPE
enemy)) as a parameter and returns the rdentilying codes of the processes o(this type
existing in the game at thai moment.

• For the eollislon()function is similar to the previous one. with the proviso that it returns
the identifying codes of the processes with which it is colliding (that is to say. the
graphics of both processes are partially superposed).

• For the signal() function, that may send a sigrral to all the exislmg processes of a
specific type.

• Or to verify, from a process' identifying code, what kind of process it is (type spacecraft,
type shot. etc.).

Note: The operator TYPE can only be used preceding a process rtame of the program or
the word mouse, to delect coliisions with the mouse pointer (collisionlTYPE mouse)).

B.2 IdentHying codes of processes

A process is an object independent of tne program, thai executes its own code and that can
have its own coordinates, graphics, etc Processes of a program can be. lor instance, a
shot, spacecraft or enemy. When something similar to what is below Is input inside a
p r o g r a m ;

PROCESS shot(...);
B E G I N

/ / s t a t e m e n t s . . .
E N D

The statements thai are going to execute the 'shot type" processes (diat Is to say, ihe code
ruling Iheir perfonmance). are specilied.

As it can be noticed, more than one shot type process may exist In a program. Then, how
can Ihey be distinguished? Simply by their identifying code.

Every lime a new process is created ih a game, an identifying code is assigned to this
process. This code is going to bo the exclusive reference of the process until II disappears.

Two diflerent processes will never have the same ideniilying code at the same time.
However, the code that belonged to a process that has already disappeared can be
assigned to a new process (something similar to wnai happens in relation to an i.d).

The identifying codes are always whole, positive, odd numbers, like 471,1937 or 10623.

All the processes have their own identifying code in ID, that is something similar to a
process' local variable local, with the proviso that II can not be modllieO.

Page 1S1

Moreover, the processes liave the identitying code of the process thai created them (that
called them) In father. They have the identitying code ol the last process they created (the
last one they called) In sot). And so on.

W h a t a r e t h e I d e n l l f v l n o c o d e s t o r ?

Normally, ail the processes need the identifying code of the other processes in order to
interact with them (to see where they are. to modify them, .„),

For instance, it is not possitjie to Subtract energy from the "enemy type" process, as many
or none ol this type ol process may exist, it is necessary to have the specific identifying
code of the enemy process from which you want to subtract energy.

A process accesses ail its own variables simply by their names, such as x. size or graph.
Thus, if the Identifier of a process is known (In son, father or any variable defined by the
user, such as id2), then It is possible to access the variables of lhat process, as (son.x,
lather.slze or Id2.graph) That is to say. the syntax to access local variables ol artother
process is as toliows:

ddentitying_co(fe>.<name_variable>

These variables can normally bo used to consult them or modify them.

It Is not at all possible to access PRIVATE varlsblea of another process at any rate. In
order to access a private variable ol another procoss. it is necessary to change its
declaration to the LOCAL section to transform it into a local variable. Then, any procoss will
bo able to access that variable lusi having the identifying code of the process, as all the
processes will have that vanable.

The Identifiers have more utilities other than the access to alien local variables, such as the
slgnalO function, that can send specific stgnals to a process it its identifying code is known
(tor instance, to eliminate tne process).

There are also other functions, such as coll)sion(). used to detect collisions with other
processes. When this function detects a collision, it relums the identifying code of the
process with which ii is colliding. Once this code is known, it is possible to access the
variables of the process and send them signals.

The get_id() function operates in a similar way to colllslon(). obtaining the identitying code
of a process. But in this case, no collision with it is required.

8.3 Ways to obtain the Identifying code of a procesa

All ihe processes have their own Identifying code m ID (reserved word in the language that
IS equivalent to the Identifying code ol the process).

When a process Is created (Is called), it retums its own Identitying code as return value,
unless It has limshed with a RETUHN(<expression>), That is to say, a process will always
relum its Identifying code when n finishes (when Its END Is reached), when it executes the
FRAME or Ihe RETURN statements without expression in brackets.

Page 152

eg I s6Bd

eiqeuBA ieqo|6 uejosoeds^pi eqi ui papniqui si isqi
■jaijljuap! si! esodind leqi joj Buisn 'ujBj6ojd ureuj aqi Aq
P0JB8J3 uejqaseds aqi jo aiqeuBA z aq; ssaaoB sassaoojd
adA) Auiaue aqi ;u!od ai^pads b ib 'aidujBxa smi u|

aN3

■"II
:o=z-i)BJoaoBds~p| ... n

NI03S
OAiuaua sS300Ud

aN3

•••//
NI93a

0«BJ3a3Bds ss300ad
aN3

■"II
:()l)BJ380BdS=UBJ0e0BdS PI

■jaijliuap! sii aABq ni'Vi 1! sb 'h qiiA\ pBJaiuj NI93S
o) aiqB eq ii|m ssaoojd Aub 'snqi (luiod Aub ib ssaoojd Aub ;HBJ08aBds~p|
Aq P8SS8D3B eq ub3 pq;) oiBjBojd aqi)o aiqeuBA nvaOlO ivaono
B 01 Jaijiiuapi si| uBjssE oi injasn aiouj aq ubo h uaqi :auJB6~Aui mvBOOHd
'0ujbB b)o qBjqeoBds jsiuoBBiojd aqi •aauBisuj joj 'sb qans
ssaaojd luBpoduij ub s| ;i sb 'sjaqio Aueuj oioji ssaosB oi spaau ssaoojd Ojnoads b uaqM

•6U|pii|03
SI I! q3|qA^ qijAd sassaoojd aqi)0 sjeqiiuap! aqi ujBiqo oi uojpun) ()uo|S|||03 aqj. •

•0ujb6 aqi ui luaujOLu oijioads b ib Bujisjxe (Pie 'loqs 'HBJOaoBds)
adAi ojjjoads b jo sassaooJd aqi p sjaijjiuapj aqi u|B|qo oi uojpunj OprjaB aqi •

:/wo|eq paiB3|pu| sb "sassaoojd
JO sapo3 BuiAjiiuapi ujEiqo oi sAb« jaqjo ajE ajaqj 'diqsuoiiBiaj pajip jo uoiieajo sapjsag

(auo eiBuiiijnuad aqi aq jjm jaqpjq japia sii 'ajojajaqi leuo iSBj aqi s| uos sb) paiBaJO
ssaoojd aiBLUiijnuad aqj jo jaijuuapi aqi ssaooE o| ojqSjq'uos sb qons suo|iEU|quj03 a>|BUj
01 ajqissod si jj 'sajqEUBA iboo] os|b ajB oia uos 'jaqjej se 'puE (<aiqB|jEA><ja!j||uapp>)
sajqEUEA jBOOj J|aqi ssaooB oi sn A^o||E sapoa BuiAjiiuapi ,sassaoojd aqi

(pajBaddBSjp SBq ssaoojd siqi ji jo paiaajo pu Sj ssaoojd b jijun o oi jBnba
aq |||M uos 'aouBisui joj) pauijap uaaq pu aABq Aaqj ji o oi jsnba aq ubo sapBUBA asaqi

■JI pajBajo bujABq jaqB jaqjBj aqi Aq paiaajo ssaoojd
Bu|mo||Oj aqi jo Jaijjiuap! 'jaqpjq jaBunoi - ojqneujs

•II Buipajo ajojaq jaqiEj aqi Aq paiBSJO
ssaoojd |SB| aqi jo jamiuapi 'jaqpjq japig - ojqB|q

'(ssaoojd paiiBO
ISBi) II Aq paiBaJo ssaoojd]sb| aqi jo jaijipapi 'uos - uos

•(||B0 aqi apBUi laqi auo eqi)
II paiBSJO iBqi ssaoojd aqi jo jeijiiuapi 'jaqiBj - Jsqie^

isassaoojd jaqp jo sjaijiiuapi qiiM pauqapajd
saiqBUBA |Boo| Buimoipj aqi sABq sassaoojd aqi nv

aN3

■"11

NI03a
OssaoojtTAuj sS330Ud

aN3
■"II

:()ss0ooj(rAuj=2pi
NI93a

■m 31VAIUd
!euJBB~Auj nvUOOBd

'aiqauBA zpi aqi u| pajois s| ja|j|iuap| si| puB
'ujBjSojd u|BUi aqi ujojj paiaajo s| (edA| ssaoojd'Aui) ssaoojd b 'aiduiBxa Buimoipj aqj uj

8.4 Call to a proceaa

<process naine> (<list of paramoters>)

In order to call a process, pul iho name ol tne process, followed by a list including as many
expressions separated by commas as parameters ol the process, in brackets. The
brackets are obligatory, even if the process has no call parameters

A call to a process will always return a value that depends on which one ol ihe following
actions Is performed first by the called process.

• It the FRAME statement is executed, then Ihe process will return its Identifying code.

• If the process executes the RETURN(<e*pression>) statement, then the former will
return the result ol this expression.

• II ihe process limshes, either because the END of its BEGIN Is reached or because a
RETURN statement Is executed with no expression, the process will return the
Identifying code that had. But. as Iho process has fmished (killed). It is necessary to
take into account that this identifying code can now be used by any other process
c r e a t e d f r o m n o w o n .

The return value can t>e Ignored, assigned to a variable or used inside an express on.

In this example, the main process my_game makes two
calls 10 the process my_process. wtilch receives two
parameters In its x and y local vanables.

As the process executes the FRAME statement, it will
return its Identifying code.

It can be noticed how the value returned in the first call to
the process is Ignored (it is not used at all), and how, In
t h e s e c o n d c a l l . t h e I d e n t i f y i n g c o d e o f
my proces5(320. 200) is assigned to the private variable
ol the mam process Id2.

When a call to a process is made, the execution of the
current process is momentarily slopped, and Ihe code ol
Iho called process Is executed, until it is returned through
one of Ihe three mentioned cases (until it l inishes or
exocuios a FRAME or RETURN siaiement).

If the process has (mished with a FRAME siaiement, it will be displayed in the following
frame according to the values esiabllshod in its local variables (x, y. graph....) and, in ihe
preparation of the following Irnmo, this process will go on running Irom the FRAME
s t a t e m e n t .

PROGRAM my_game;
P R I V A T E

id2;
B E G I N

my_proc8ss(0,0);

Id2=my_process(320.200);
I I . . .

E N D

PROCESS my_process(x,y)
B E G I N

L O O P

FRAME;
E N D

E N D

Page 154

6.S Hierarchies of processes

When a program siafls to run there Is only one process: the initial process, wtiich starts the
execution o1 the rnain code's statements. But, from this moment, this process can create
new processes that, at the same time can create other processes, destroy them. etc.

In order to clarity the events appearing through a program, we use a simile, treating the
processes as h they were alive beings that are born and killed (when they are created or
destroyed). For that reason, the toilowing terms arc established:

Father, name given to the process that has created another one (mother would have
been a more appropriate name).

Son. process created by another one.

Brothers, processes created by the same father.

Orphan, process whose lather has dead (as it has been either eliminated or linisited).

This vocabulary may be spread as far as your imagination desires grandfathers,
grandsons, uncles, etc.

All the processes have direct access to the identifying codes of the processes with which
they have direct relationship.

Occasionally, reference is made to actions performed by 'the system*. This process,
called div.main. controls the rest. Therefore, it is in charge of creating the initiat process at
the beginning of the execution, of setting the speed execution, the debugger, etc. All the
processes that are orphaned become sons of this process.

The div_main identifier can be obtained with get ld(0). It can be used to send a tree
Signal to all the processes, but this process won't be displayed on screen , even if its x. y.
graph, etc. variables are defined.

8.6 States of a process

Processes are the different elements of a program (objects of the game). They may
experience different states on creating, destroying or receiving specific signals with the
sIgnalO function.

A l i v e o r e w a k e n p f o c e s a
A process is alive when it is running (when it is Intorprotlng the siatements located between
Its BEGIN ana its END).

D e a d p r o c e s s
A process is dead when it finishes (either Icecause its END is reached in the execution, a
RETURN is executed or because it receives a signal s.klll or s_kill_tree).

Page 15S

A s l e e p p r o c e s s
A process may receive the signal s_sleep (or s_sleep_tree). then becoming asleep. In this
stale, this process will appear to be dead. But it is not as. at any moment, it may receive a
signal s.wakeup and return to the alive or awake stales. II is also possible to kill an asleep
p r o c e s s .

F r o z e n p r o c e s s

The signal s.freeze (or s_freeze_tree) freezes a process. In the Irozen state, the process,
that is still visible, remain blocked. It may be detected by the rest ot the processes (lor
Instance, in collisions), but it is not executed (it stc^s interpreting its code statements). It will
remain in this state until it receives another signal that changes its state or that kills It.

A frozen process may be controlled (moved) by another process, directly manipulating its
v a r i a b l e s .

N o t e s :

When a signal is sent to a process, aiming at changing its state, this signal will have no
ollect betore its following display (FRAME) is reached if the process is running. II the
process is not running, then the signal will have an immediate effect.

No signal must be sent to nonexistent processes (to an ideniitying code that does not
correspond with any process).

This signal will be ignored when the aim is to put a process in the state in which it is already.

8.7 Um of angles In the language

In the language, all the angles are specilled in degree Ihousandihs. For instance:

0 are 0 degrees (to the right)
90000 are 90 degrees (up)
-4SOOO are -4S degrees (down nghi diagonal)

If 360 degrees (360000) are added to or subtracted from any angle, an equivalent angle is
obtained. For instance, the angles -90000 and 2700(X) are equivalent (the angles of -90
degrees and 270 degrees go both downwards)

The constant PI predefined as 18DOOO. 3.1415 radians or. what Is the same, 160 degrees,
can be used as reference. For instance. PI/2 will be equal to 90 degrees (90000)

Some cl the functions dealing with angles are the lollowing ones: get_angle(). get_dlstx(),
get dlstyO, fget_angle(). near_angle(). advance().

All the processes have a predefined local variable called angle which, by default, will be
equal to 0. if its value is modilled. the display's angle ol the graphic of the process will bo
changed (the graphic will rotate in the indicated degrees, from the original graphic).

Page 166

8 . 8 A b o u t t i M c o n d l K o r t s

In general, any expression Is valid as a condition. In ihe language, all the ODD expressions
are Interpreted as true and all the EVEN expressions are interpreted as false.

In this example, the x=x+l; statement will always be
execuled, as the expression 20*2+1 equals 41. an odd
n u m b e r .

All Ihe available operators are valid inside a condilron. It is
even possible to make assignments inside a condrtion (the
assignments are operations that return the assigned value
as a result).

All the Identifying codes of processes are odd numbers, thai Is to say. all of Ihem are true.
Therefore. It rs possible to implement conditions as the lollowing one (supposing that Id2
has been declared as a variable, and shot is a process type of the program).

WHILE (id2=gel_ld{TYPE shot))
id2.sizesid2.slze-1;

E N D

in the condition Id2sget ld(TYPE shot) the result of the get_ld() function is assigned to the
Id2 variaPle. If that lunclion has returned an Identifying code, it will be an odd number and
the condition will be evaluated as true (if get_ld() does not find (more) identifiers of "type
shot' processes, then it will return 0 (which is an even number). The condrtion will be
interpreted as false, and the WHILE slatemert will finish.

The previous statements would decrement the size variable of all Ihe type shot processes
contained In the program.

8.9 Evaluation of an exprasslon

It is important to know the way in which the expressions are evaluated in order to know
where It may be necessary to put brackets indicating the way in which the expression is
intended to be evaluated.

In the language, an expression can contain operators of different levels of priority.

In the evaluation ol an expression, the operators ol priority 1 (If they exist), will always be
processed first, and then, those ol priority 2. priority 3 and so on.

Pr iontv 1

() Brackets, beginning and end of a sub-expression.

P r i o n t v 2
. Period, operator of access to local data and structures.

PROGRAM my_game:
B E G I N

I F (2 0 ' 2 + 1)
>ax+1;

E N D
E N D

Page 157

P r i o r i t y 3
NOT Binary and logical negation (I).
OFFSET Offset (&).
POINTER Addressing operator (*, []).
- Sign negation.
++ increment operator.
- Decrement operator.

Pr io r i t y 4
* Multiplicatiori.
/ Diyision.
MOD Module {%).

P r i o r i t y 5
+ A d d i t i o n .
- S u b t r a c t i o n .

P r i o r i t y 6

« Rotation to ttie rigtit.
» Rotation to ttie left.

AND Binary and iogicai (&, &&).
OR Binary and logical (I, li).
XOR Exclusiye Or (*. **).

Pr io r i t y 8
= Compar ison ,
o Different (l=).
> Bigger.
>= Bigger or equal (=>).
< L e s s .
<= Less or equal (=<).

P r i o r i t y 9
= Assignment.
+= Addition-assignment.
-= Subtraction-assignment.
*= Multiplication-assignment.
/= Diyision-assignment.
%= Module-assignment.
&= AND-assignment.
1= OR-assignment.
"= XOR-assignment.
»= Rotation to ttie rigfit-assignment.
«= Rotation to ttie left-assignment.

The operators of priority 3 are known as unary operators. They do not link two operands
(uniike the binary operators such as. for instance, a multiplication), but they just affect the
value of an operator.

Inside the unary operators, those closest to the operand will be executed first. For Instance,
In the expression:

The operand * has two unary operators, the negation of sign - and the logical and/or binary
NOT. Among them, the negation of sign will be executed first, as It is closer to the operand.

From priority 4, all the operators are binary and they will be executed according to their
level of priority. Therefore, when in an expression there Is more than one operator of the
same level (for instance, a multiplication and a division, both of priority 4), they will be
processed from left to right. That Is to say, in the following expression:

The division will be executed first and then, the multiplication (It Is the natural way to
evaluate the expressions mathematically).

The Ohiy exception are the operators of priority 9 (assignment operators), that will be
evaluated from right to left (Instead of from left to right). That is to say. In the expression:

y=0 will be processed first (y will be put at 0) and then, x=y (x will also be put at 0, as y will
now be equal to 0).

As it can be noticed, the assignments worlr like an operator. After the assignment, they
return the value they have assigned as a result of fhe operation.

Appendix A: Summary Of The Syntax Of A Program

This first appendix shows a brief summary of the syntax of a program in the DIV language
which could help to clarify the general structure of a program.

The syntax is shown informally, highlighting the symbols and reserved words which are
essential to the language. The dots indicate that the previous declaration can be repeated
any number of times. Many of the parts of the programs shown here are optional.

An extended and detailed syntax with examples can be found in the help hypertext of DIV
Games Studio (using option help... in the main menu).

PROGRAM <name>;
C O N S T

<name> = <numerical value> ;

G L O B A L
<declaration of datum>;

L O C A L
<declaration of datum>;

P R I V A T E

<declaration of datum>;

B E G I N

<s ta temen t> ;

<Declaration of process>

< D e c l a r a t i o n o f d a t u m >

T h e r e a r e t h r e e k i n d s o f d e c l a r a t i o n o f d a t u m :

< D e c i a r a t i o n o f a v a r i a b i e >
< D e c l a r a t i o n o f a t a b l e >
< D e c l a r a t l o n o f a s t r u c t u r e >

< D e c l a r a t i o n o f a v a r i a b l e >

<name> = <numerlcal value>

< D e c l a r a t i o n o f a t a b l e >

<name> [<numerical value>] = <list of numerical values >

< D e c l a r a t l o n o f a s t r u c t u r e >

STRUCT <name> [<numerlcal value>]
< d e c l a r a l l o n o f d a t u m > :

END = < l l s t o f numer i ca l va l ues >

< D e c l a r a l i o n o f p r o c e s s >

PROCESS <name> (<lisl of parameters>)
P R I V A T E

<declaratlon of datutn>;

B E G I N

<s ta temen t> ;

< S l a t e m e n t >

We find the following kinds of statements:

<Statement of assignment>
< S t a t e m e n t I F > «

< S t a t e m e n t S W I T C H >
<Statement LO0p>
<Statement FROIift>
<Statement REPEAT>
<Statement WHILE>
<Statement FOR>
< S t a t e m e n t B R E A K >

< S t a t e m e n t C O N T I N U E >
< S t a t e m e n t R E T U R N >
< S t a t e m e n t F R A M E >
<Statement CLONE>
<Statement DEBUG>
<Cal l to a func t ion >

<Call to a process >

<Statement of assionment>

<datum> = <numerical expression>

< S t a t e m e n t I F >

IF (<condit ion>)
< s t a t e m e n t > :

(or otherwise)

IF (<condi t ion>)
<s ta temen t> ;

E L S E

< s t a t e m e n l > ;

< S t a t e m e n t S W I T C H >

SWITCH (<numerical expression>)
CASE <range of valu8s>:

<s ta tement> ;

(or otherwise)

SWITCH (<numerical expression>)
CASE <range of values>:

<s ta tement> ;

D E F A U L T :

<s ta tement> ;

WHILE (<condition>)
<s ta temen t> ;

< S t a t e m e n t R E P E A T >

R E P E A T

<s ta temen t> ;

UNTIL (<cond i t ion>)

< S l a t e m e n t L C > O P >

L O O P

<s ta temen t> ;

Page 164

< S t a t e m e n t F R O M >

FROM <variable> = <numerical value> TO <numerical value> ;
<s ta temen t> ;

(or otherwise)

FROM <varlable> = <numerical value> TO otumerical value> STEP <numerical
\ /a lue>;

<s ta temen l> ;

< S l a t e m e r t l F O R >

FOR (<inltialisatlon>; <concjltlon>; <lncrement>)
<s ta temen t> ;

< S t a t e m e n t C O N T I N U E >

<Slat6ment RETURN>

(or otherwise)

RETURN(<numerical expresslon>)

< S t a t e m e n t F R A M E >

(or otherwise)

FRAME(<nurnericai expression>)

<Stalement CLONE>

C L O N E

< s t a t e m e n t > :

< S l a l e m e n l O E B U G >

D E B U G

<Cal l 10 a orocBss >

<name> (dist ot patameiers>)

<Cal l to a func t ion >

<name> (dist of parameters>]

Page 166

Appendix B: Functions Of The Language

The functions available in DIV Games Studio are described in this appendix. It is also
possible to consult them, in an interactive way, in the help hypertext where, moreover, a
sample program for every one of these functions is shown and explained.

a b s f < e x D r e s s i o n > t

R e t u r n s :

The absolute value of the expression.

Descr ip t ion :
Calculates the absolute value ol the expression passed as a parameter. That is to say, if the
result of the expression Is negative, it will change its sign; if it Is positive, It will not change it.

advancef <distance>)

D e s c r i p t i o n :
Advances the process in its angle (the one shown by the angle local variable) as many
points as the expression (distance) passed as a parameter shows.

The distance can also be a negative number, in that case, the graphic of the process will
move forward (its coordinates x and y) In the direction opposite to its angle.

N o t e s :

Keep in mind that the angle is specified in thousandths of a degree.

This function is always equivalent to the two following statements:

x+=get_distx(angie,<dlstance>);
y+=get_disty(angle,<distance>):

That is to say, this function only modifies the coordinates of the process. It is possible to use
the two previous statements when the aim is to advance the process In an angle different
from the one shovm by its angle variable. It will be useful when the aim is to make the
graphic of the process advance in a direction without rotating.

For instance, to make the process advance 8 points in a direction (that could be obtained In
a private variable like angle2) but rotated to another direction, (the one showed in angle),
the following statements would be used:

x+=get_distx(angle2,8);
y+=get_d is ty (ang le2,8) ;

Page 168 a V

D e s c r i p t i o n ;
To use this function it is essential to have a 16 Bit sound card installed.

The use of this function only makes sense after using the sound() function, used to emit
s o u n d s .

Change_sound() modifies a sound that is being played through one of the channels,
adjusting its volume and its frequency once again.

The channel is the channel code returned by the sound() function when it is called. The
16 channels may even sound at the same time, with the same sound or with different
sounds. Therefore, every time that a sound is emitted it will possibly be emitted through a
different channel.

Every channel has its volume and frequency levels established at all times.

The volume is a value between 0 (minimum volume) and 512 (maximum volume) that
determines the power with which the sound of that channel will be heard.

The frequency is a value that affects the speed at which the sound is heard through the
channel. That is to say, it controls the bass and treble of the sound. This value ranges
between 0 (bass) and 512 (treble).

c l e a r s c r e e n f

Description:
Clears the screen background, that is to say, the graphics that would be drawn on it with the
put(), xputO, put_plxel() and put_screen() functions.

R e t u r n s :
The Identifying code of a process or 0.

Description:
This is the language's function used to detect collisions between graphics.
it verifies if the current process (executed by this function) collides with one of the type
shown as a parameter. That Is to say, it verifies if the graphics of both processes are
touching, at least partially.

In case of collision, it will return the Identifying code of the process with which the current
process is colliding. Otherwise, the function will always return 0.

If the current process collides with several processes of the specified type, the col1lslon()
function will return the rest of the identifiers in the successive calls made to It.

To obtain In this way ail the Identifying codes of the processes that collide with the current
one, the FRAME statement must not be used between two consecutive calls to the
colllslonO statement, t/i/hen a process executes a FRAME statement, this function wiil
return all the identifying codes of colliding processes from the first one,

Somelhitjg similar happens if a call to the function is executed, specitymg a different type of
process. If, after that, collisions with the previous type are detected, this function wiii also
return all the codes from the first one,

II the aim is to obtain the Identifyicrg codes of the processes of a specific type, even if
there IS no collision with them, it is necessary to call the get Jd() function.

But if the aim is to check the proximity between two processes whose graphics are not
necessarily colliding, then the get_dlst() function will have to be used.

N o t e s :

When the mouse pointer is being displayed in the program (assigning the code of the
conespontbng graphic in the mouse structure), it is possible fo see it the pointer collides
with the current process using this function, lor instance, in the following way:

IF (colllslon(TYPE mouse))
//The process collides with the mouse pointer'

E N D

On deiecfing the collision with the mouse pointer, it wiil not be done with the whole
graphic used as a pointer, but only with its main control point (number 0). usually called
mouse holspol.

I m p o r t a n t :

TTils furwUon Is useful to detect collisions between graphics of the screen or of a scroll
' w i n d o w .

It is not possible to use this function to detect collisions with pnxesses that have no
graphic (a valid code assigned to its graph variable) or t>etween graphics of a mo<Je-7
window (with its ctype variable assigned to the value c_ni7).

' Therefore, it is essential that both, the current process and the process of the ^>ecifled
I type, have a graphic defined.

convert D«letter<file>. <QraDhlo, <OFFSET new palfltte>)

D e s c r i p t i o n :
Changes the colour map of the <9raphle> of the indicated <flle>.

The <OFFSET new_palette> is the address, inside the computer's memory, of a 256 value
table where the new order of the graptiic's colours will be Indicated.

If ttie table witti the new palette is like the following one:

new_palette(255|=0, 1, 2. 3, 4 254, 255:

then the graphic would not be transformed. If, for Instance, in position 3 of the previous table
(new_palette[3)) we put a 16 (Instead of a 3), by calling this function with the OFFSET of this
table, colour 3 would be replaced by colour 16 in the graphic.

The graphics loaded with the load_map() function will be used as if they belonged to the
first file (the code 0 file).

If a process wanted to replace the colours of its graphic, it should be first necessary to
create a table with the new colours order and then, call the function with the parameters:

convert_palette(fiie, graph,<OFFSET new_palette>)

Using the file and graph local variables of the process itself as parameters of the
convert_palette() function.

a e r i n e r e o i o n i < n u m p e r o f r e Q i o n > . o o . < v > . < w i d i h > , < h e i a h t >)

Descr ip t ion :
Defines a new display region inside the screen (something similar to a window). The regions
are rectangular zones of the screen inside which some specific processes, scroll or mode-7
windows will be displayed.

The region number must range between 1 and 31. It is possible to define up to 31 different
screen regions that, later can be assigned to different processes (establishing their region
local variable at the new numt>er) as their display window. They can also be used as a
framework for a scroll or mode-7 window, indicating it in the corresponding parameter of the
start_scroll() or start_mode7() functions.

Region number 0 must not be redefined, as it will always tie the entire screen, a window at
the (0, 0) coordinates, of the same width and height of the screen. This Is the region in
which all the processes will be displayed by default, as its region local variable is always
equivalent to 0 by default.

d e l e t e t e x t f < 1 e x 1 i d e n t i fi e o l

Descr ip t ion :
Definitively deletes a text from the screen if the text identifier is specified as a parameter.
This identifier is a numeric code returned by the write() and writejnt() functions when they
are asked to write a text.

If alLtext is specified as a parameter, all the texts will be deleted from the screen.

D e s c r i p t i o n :
Finishes a FLI/FLC animation displayed on the screen and frees up the computer's memory
that it was occupying.

N o t e s :
The FLI/FLC animations start with the start_fli() function.

Only one animation can be loaded in the computer's memory.

It Is not necessary to wait for the animation to finish In order to unload it from the memory.

exlt(<messaQe>. <retum code>l

D e s c r i p t i o n :
The game finishes by killing all the processes immediately and going back to the operating
system (or to the DiV environment) with a message and a numeric code (the one Indicated
In the expression of the second parameter).

The message is a text in Inverted commas that will appear as a farewell message for the
player when the game Is over.

The return code Is valid to use programs external to DIV Games Studio (such as BAT
batch processing files), to determine the action that must be performed after the game has
b e e n e x e c u t e d .

When the exlt() function Is used, it is not necessary to have previously unloaded any
resource, such as files, maps, sounds, etc., since the system automatically finishes all the

All the programs will stop running if the ALT+X key combination is pressed at any moment.
This operation Is equivalent to forcing the execution of the exlt() function, but without
displaying any message and with the return code 0.

fade(<% red>.<% Qreen>.<% blue>,<s&eed>

Descr ip t ion :
Starts a fading of the game's palette colours until the display percentages (from 0% to
200%) of the red, green and blue components, shown as parameters, are obtained.

The last parameter Indicates the speed at which the colours' fading will be performed. It is
normally defined by a number, from 1 (very slowly) to 10 (very quickly).

If a number bigger than 64 or equal to it is indicated as speed, the fading will be performed
instantaneously.

Page 172

The fading will gradually be performed In the successive displays of the game (In the
following frames).

If the three components are set at 0, a fading to black is carried out. If they are set at 200, a
fading to white will be carried out. Finally, the original colours of the game palette will be
recovered if the components are set at 100.

A value less than 100 In a component will fade Its colour, whereas a value higher than 100
will saturate the colour.

Keep In mind that the fading Is not carried out by executing the fade() function, but it Is
carried out In the following FRAME stafements. While a fading Is carried out, the predefined
fading global variable will be equivalent to true (an odd number that, In this case, will be 1)
and when the fading Is over (finally obtaining the specified colour display values), this
variable will become equivalent to false (an even number, number 0).

D e s c r i p t i o n :
Carries out a fading of the screen's colours to black. The game slops until the screen
becomes completely black. Carrying out a fading to black Is called to fade the screen off,

The fade_on() function Is used to fade the screen on again (undo the fading to black).

N o t e :
The fade() function can fulfill the same function without stopping the program or at different
speeds. At the same time, It can produce other more advanced palette's effects.

D e s c r i p t i o n :Carries out a screen colours' fading to its natural situation. In the successive displays of the
game (on reaching the FRAME statement) the colours will gradually be appearing until they
are perfectly seen. This action is called to fade the screen on.

The fade_offO function is used to fade the screen off (to carry out a fading to black).

N o t e s ;

The fade() function can fulfill the same function at different speeds. At the same time, it can
produce other more advanced palette's effects.

All the games automatically carry out a fade_on() at the beginning of the execution.

R e t u r n s :

The angle between two points.

D e s c r i p t i o n :
Returns the angle existing from point 0 (xO, yO) to point 1 (x1, y1).

Keep In mind that the angle is specified in degree thousandths. The function always returns
a value between -180000 and 180000 (an angle between -180 and 180 degrees).

Any valid numeric expression can be defined as coordinates of both points (xO. yO, x1, y1).

N o t e s :
The get_angie() function is used to obtain the angle from a process to another one,
instead of befween two points.

The fget_distO function is used to obtain the distance between two points, instead of the
angle.

R e t u r n s :
The distance between two points.

D e s c r i p t i o n :
Returns the distance existing from point 0 (xO.yO) to point 1 (x1,y1).

Any valid numeric expression can be specified as coordinates of both points (xO, yO. x1.
yi).

N o t e s :
The get_dist() function is used to obtain the distance of a process to another one,
instead of between two points.

The fget_angle() function is used to obtain the angle between two points, instead of the
d i s t a n c e .

This function may be used to detect collisions between processes due to their proximity,
even if the coilision() function is normally used to this purpose. The last function detects
when two processes have their graphics overlapped.

For instance, with the processes displayed inside a mode-7 window (see start_mode70),
the coliisionQ function can not be used, being necessary to obtain the distance between
the processes (normally with get_dist()) to verify if they collide with each other (if their
distance is less than a distance already determined).

Page 174

R e t u r n s :

True if the animation goes on and false if it has finished.

D e s c r i p t i o n :
Shows the following frame of a FLI/FLC animation started with the start_fli() function. This
function retums 0 if the animation has already finished.

During the program's execution, it will be possible to execute but one FLI/FLC animation at
the same time. That is to say, it will not be possible to execute two animations
simultaneously.

The animation frame will only be displayed in the following frame of the game (when the
FRAME statement is reached). Therefore, if a loop is made and Inside it the frame_fli()
function (but not the FRAME statement) is called, the animation will not be displayed on
t h e s c r e e n .

R e t u r n s :

The angle towards another process.

Descr ip t ion :
Retums the angle trom the current process (the one that called this function) to the process
whose identifying code is passed to it as a parameter.

Keep in mind that the angle is specified in degree thousandths. The function always returns
a value between -180000 and 180000 (an angle between -180 and 180 degrees).

N o t e s :
The fget_angleO function is used to obtain the angle tretween two points, instead of
between two processes. If the identifying code of the process Is stored, for Instance, In a
variable called id2, then the call to the function:

get_angle(ld2)

would t)e equivalent to:

fget_angle(x,y,id2.x,id2.y)

Obtaining the angle from the (x, y) coordinates of the current process, to the (x, y)
coordinates of the process whose identifying code is Id2.

The get_distO function is used to obtain the distance to another process, instead of the
angle.

Page 175

> t d i s t f < i d e n t i f v i n a c o d e > 1

R e t u r n s :

The distance to another process.

Descr ip t ion ;
It returns the distance between the current process (the one that called this function) to the
process whose Identifying code is passed to it as a parameter.

if the process has defined Its local variable resolution, it is important that the process to
which the aim is to obtain the distance has It defined at the same value. That is to say, if
both processes use the coordinates In hundreds Instead of units (with resolution=100), the
distance between both will also be obtained in hundreds. But if the value of that variable
differs in both processes, the result of the get_dlst() function will make no sense.

N o t e s :
The fget_dist() function Is used to obtain the distance between two points, instead of
between two processes. If the identifying code of the process is stored, for instance, in a
variable called id2, then the call to the function:

get_dist(id2)

Would lie equivalent to:

fget_d ls t (x ,y, id2 .x , id2 .y)

Obtaining the distance from the (x, y) coordinates of the current process, to the (x, y)
coordinates of the process whose identifying code Is id2.

The get_angle() function Is used to obtain the angle to another process, instead of the
d i s t a n c e .

This function may be used to detect collisions between processes due to their proximity,
even if the colllsionO function is normally used to this purpose. The last function detects
when two processes have their graphics overlapped.

For instance, with the processes displayed inside a mode-7 window (see 8tart_mode7())
the collisionO function can not be used, being necessary to obtain the distance between
the processes to verify if they collide with each other (if their distance is less than the
distance already determined).

R e t u r n s ;
The horizontal offset of the vector (angle, distance).

D e s c r i p t i o n ;
Returns the horizontal distance (in the axis of the x coordinate) from the angle and
distance (over this angle) passed as parameters. That is to say, it returns the distance
covered in horizontal by the vector made by the angle and length (distance or vector
module) indicated. Keep in mind that the angle is specified in degree thousandths and any
valid numeric expression may specify the distance.

The function used to calculate the vertical distance, instead of the horizontal one, is
get_d ls ty() .

N o t e s :

if the aim is to advance the coordinates of the process a distance in a specific angle, the
following statements may be used:

x+=get_distx(<angie>,<distance>);
y+=get_d i sty(<angie>,<d istance>);

if the angle in which the aim is to move the process is the one contained in its angle local
variable, then this operation could be performed with the advance() function in the following
w a y ;

advance(<distance>);

The get_distx() function is equivalent to calculating the cosine of the angle and multiplying
it by the distance.

qet_dlstv(<angle>, <distance>)

R e t u r n s ;
The vertical offset of the vector (angle, distance).

Descr ip t ion ;
Returns the vertical distance (axis of the y coordinate) from the angle and distance (over
this angle) passed as parameters. That is to say, it returns the distance covered in vertical
by the vector made by the angle and length (distance) indicated.

Keep in mind that the angle is specified in degree thousandths. Any valid numeric
expression can specify the distance.

The function used to calculate the horizontal distance, instead of the vertical one, is
get_d is tx() .

get lov button(<number of button>>

R e t u r n s :
True (1) if the button is pressed, False (0) if it is not.

D e s c r i p t i o n :
This function requires the joystick number button (from 0 to 3) as a parameter, and retums
true (an odd numerical value) if it is pressed at that moment.

If the button is not pressed, the function retums false (an even numeric value).

Some joysticks have only 2 buttons. In this case, they will be number 0 and 1 buttons. In
computers with two connected joysticks, the second joystick will have buttons number 2 and
3 .

There are other ways to use the joystick. The easiest one is to use the joy structure, since
in it there are four records that continuously show the state of the joystick buttons.

R e t u r n s :
The position of the joystick axis.

Descr ip t ion :
This function returns the coordinate in which the axis specified (with a number from 0 to 3)
of the analog joystick is placed,

0 axis - Main X axis.

1 axis - Main Y axis,
2 axis ■ Secondary X axis,
3 axis - Secondary Y axis.

The joystick coordinate may vary, depending on the type of joystick and on the computer in
which it is executed. Anyhow, it is a number that usually ranges from 4 to 200,
approximately.

The main and secondary axes may be integrated in a single joystick, on some occasions
(flight commands with pedals, etc.). In computers having two connected joysticks, joystick 1
will be the main axis and joystick 2 will be the secondary one.

There are other ways to use the joystick. The easiest one is to use the joy structure, when
an analog reading of the joystick (its coordinates) is not required. That is to say, when it is
enough to know if the joystick is at the center, to the right, down, etc.

Page 179

R e t u r n s :

The current coordinates of the control point (in the variables whose offset is indicated as
the last two parameters).

Descr ip t ion :
This function returns where, at that moment, a control point of the current process' graphic
is in the system of coordinates used by the process itself (see ctype local variable),
evaluating the original location of the point, the current coordinates of the process, their
size, angle, etc.

A control point is a point that can be defined in the graphic editor (painting tool), in the
option designed for this function.

The function needs the address (that is obtained with the offset operator) in the computer's
memory of two variables in which it will return the x and y position of the control point.

The graphics loaded with the load_map() function will be used as if they belonged to the
first tile (the tile with the 0 code).

N o t e s :

This function is normally used to have some important points of a graphic located. For
instance, if we have defined a process whose graphic is a man with a gun that can be
scaled, rotated or that can perform different animations, we could define a control point in
the barrel gun's point-to know at any time Irom where the bullets must leave when shooting.

It the original graphic was inside a scroll region (see start_scroll()) then the returned
coordinates will also refer to that scroll region.

The get_polnt() function retums the position where a control point was originally placed
in the graphic, unlike the get_real_polnt() function, that returns its current position.

R e t u r n s :
The required Information about the graphic.

Descr ip t ion :
Returns the required information about a graphic of a file.

I n f o r m a t i o n :

g_wlde - The function will return the original width of this graphic if g_wide is put as third
parameter.

g_helght - The function will return the original height of the graphic.

g_x_center - The function will return the x coordinate of the graphic's center.

Page 181

g_y_center - The function will return the y coordinate of the graphic's center.

The graphics loaded with the load_map() function will be used as if they belonged to the
first file (the file with the code 0).

R e t u r n s :

True (1) if the CD is playing, or false (0) if it is not.

D e s c r i p t i o n :
This function is used to determine whether the CD is piaying a song.

It returns True (an odd number) if fhe CD is playing a song. Otherwise, it returns Faise (an
even number).

Its most widespread use is to play a song indefinitely.

N o t e :
The volume of cd-audio reproduction may be controlled with the setup structure and the
set_volume() function.

k e v (< k e v b o a r d c o d e >)

R e t u r n s :

True (1) if the key is pressed and false (0) if it is not.

D e s c r i p t i o n :
Retums true (an odd number) if the key, indicated as parameter, is pressed at that moment.
Otherwise, it returns false (an even number).

The input parameter will normally be the name of the key with the _ (underlining) symbol
ahead. For instance, to read the [A] key, the function must be called key(_a).

Access the keyboards codes in appendix 0.6 to see the whole list of the keyboard codes
that may be used as parameter of the key() function.

N o t e s :
There are three predefined global variables thai can also be used to control the keyboard,
and they are the following ones:

scan_code - Code of the latest key that has been pressed. This code is a numeric value
that directly corresponds with the constants of keyboard codes, used as parameters of the
keyO function.

ascii • ASCII code of the latest pressed key.

Page 182

D e s c r i p t i o n :
Sends a s_klll signal to all ttie processes, except the one executed by this function.
Therefore, all the processes, except the current one. will be eliminated.

This function Is normally used from the main process, when a game Is over, to delete all the
processes (shots, enemies...) that remain active, and to recover the control of the program.

A call to let_me_alone() could always be replaced by a series of calls to the signalO
function with the s_kill signal. For that. It would be necessary to know either the types of
processes Intended to be deleted or their Identifying codes.

N o t e s :

To check the active processes of a program at a specific moment, you must access the
debugger by pressing the F12 key.

The exlt() function Is also used to Immediately finish a program, returning to the system.

Descr ip t ion :
Loads a data block from an archive on the disk to the program's memory.

For that, the function requires the archive name and the offset. Inside the computer's
memory, of the variable, table or structure stored on the disk (the datum offset may be
obtained with the OFFSET operator).

The offset of the same datum specified when the archive was stored with the save()
function must be specified.

The archive names may be given by specifying a path, which must be the same as that
used with the save{) function to store the archive. Nevertheless, It Is not necessary to
specify a path. It Is Important that the archive Intended to be loaded has been previously
created, as an error will occur If the aim Is to load a nonexistent archive (even if this can be
ignored, continuing the program's execution).

Page 183

l o a d f n M o r c h i v e n a m e >)

R e t u r n s :
T h e l o a d e d f o n t c o d e .

D e s c r i p t i o n :
Loads an archive with a new characters font (*.FNT) of the disk (a "font" with a new set of
graphic characters).

The function returns the font code that can be used by the wrlte() and wrlte_lnt() functions
to write a text.

The archives' path can be specified with the font. Nevertheless, it won't be necessary If the
archive with the letter font has been generated in the directory by default (XFI^fT).

The archive with the new font has to be created with the game's colour palette to be
displayed correctly. Otherwise, the colours will appear changed.

l o a d fi) a (< a r c h l v e n a m e > >

R e t u r n s :
R e t u m s t h e l o a d e d fi l e c o d e .

D e s c r i p t i o n :
Loads an archive with a (".FPG) file. A file means a graphics library (or collection).

An FPG archive with a graphics library may contain from no graphic to 999 graphics. Every
graphic included in the library will have a numeric code, the graphic code, a number that
ranges from 1 to 999, and that Is used to Identify the graphic Inside the file.

It Is possible to load as many graphics' files as necessary, providing there is available
memory (this function has to be called several times to load several files).

The function retums the file code, that can be used by many functions that require a
graphic. For that, it Is necessary to Indicate to them the file code In which the graphic Is and
the graphic code Inside the file.

The archives' path can be specified with the graphics file. Nevertheless, It won't be
necessary if the file Is in the directory by default {\FPG).

N o t e s :

The unload_fpg() function allows us to free up the computer's memory occupied by the
graphics' file when It Is not going to be used any longer. For that. It also requires the file
code, in order to know which file we want to unload from the memory.

It Is not necessary to unload the file from the memory before finishing the program,
since the system will do It automatically.

before finishing the program.

Page 184

R e t u r n s :
The loaded graphic code.

Descr ip t ion :
Loads a MAP archive with a graphic in the computer's memory . The function requires the
archive name as a parameter. In inverted commas.

The graphic code is returned as return value, which is a numeric value that must be
specified to use the graphic, In the graph variable or. In general. In all the functions
requiring a graphic code among their parameters.

It is possible to load as many graphics as necessary. Every time one Is loaded, the function
will return the corresponding code (the first graphic loaded will have the code 1000, the
following one the code 1001, etc.)

It is possible to specify the path to the archive with the graphics' file. Nevertheless, If the file
is in the directory by default (\IVIAP), it won't be necessary.

impo r tan t :
When the fiie code to which that graphic belongs is required Inside a function, the code 0
(which is the code of the first file FPG that is loaded in the program) must be indicated.

When different graphics have been loaded, keep in mind that if they have different palettes,
every one of them must previously be activated with the load_pal() function, indicating the
name of the file (fi^AP) as a parameter, before using the graphic.

Graphics created with different palettes can not simultaneously be used.

The unload_map() function allows us to free up the computer's memory used by the
graphic when it is not going to be used for a specific time. For that purpose, it also requires
the graphic code to know which is the graphic to be unloaded from the memory.

It Is not necessary to unload the graphic from the memory before finishing the
program, as the system will do It automatically.

To load several graphics all at once in a program, they must be included inside a graphics
file (FPG) and loaded with the load_fpg() function.

l o a d p a l (< a r c h i v e n a m e > 1

Descr ip t ion :
Loads a colour palette of the disk (from a PAL, FPG, MAP or FNT archive) defining the 256
colours displayed on the screen.

From that moment, the game will be seen with the colours set indicated by that palette.

Page 185

If, at the moment of loading the palette, the program already had a different one assigned,
then a fading of the screen colours to black will be carried out. Then, the new colour palette
will gradually appear in the following frames of the game.

The archive path may be specified with the palette. Nevertheless, it will not be necessary if
the file is, by default, in the directory (that, depending on the type of archive, will be: \PAL,
\FPG,\IVIAP or\FNT).

The program will automatically read the palette of the first of these types of archives loaded
in the program, even If the load_pal() function is not used. Then, this function will be used
when the program uses several different palettes to change from one to another.

N o t e :
A palette can not be unloaded from the computer's memory, since it does not occupy any
space in the memory.

load pcmforchive name>. <cvcl ic>f

R e t u r n s :
T h e l o a d e d s o u n d c o d e .

Descr ip t ion :
Loads a sound effect from a PCful archive of the disk. The archive name must be replaced
by the sound effect as a first parameter. As a second parameter, the <cyclic> must be
replaced by 1 if the sound must indefinitely be repeated, or 0 if it must be played only once
(when it is required with the sound() function).

The function retums the sound code that must be used by the sound() function to play that
sound through a channel.

The archive path may be specified with the sound. Nevertheless, it will not be necessary if
the sound is In the directory by default (\PCIVI).

N o t e s :
The unload_pcm() function allows us to free up the computer's memory occupied by the
sound when it is not going to be used any longer. For that it also requires the sound code
in order to know which sound we want to unload from the memory.

It Is not necessary to unload the sound from the memory before finishing the
program, since the system will do it automatically.

Descr ip t ion :
The map_block_copy() function allows us to transfer a rectangular block from a graphic to
a n o t h e r o n e .

Page 186

The graphic from which the rectangular region is taken is called origin graphic and the
destination graphic is the one in which this block will be copied. That is to say, this function
allows us to copy a part of a graphic (origin) to another one (destination). The parameters
are the following ones, in order:

<(lle> • Both graphics must come from the same graphics file. The file code must be
specified as first parameter (see load_fpg()). The graphics loaded with the load_map()
function will be used as if they belonged to the first file (the file with the code 0).

<destination graphio - code of the graphic in which the block is going to be put.

<x destination>, <y destination> - (*, y) coordinates at which the aim is to put the block
inside the destination graphic.

<origin graphio - code of the graphic Irom which the block is going to t>e taken.

<x>, <y> - starting coordinates of the block inside the origin graphic.

<width>, <height> - dimensions of the block that is going to be transferred.

This function will modify the indicated graphic, but only its copy that has been loaded in the
computer's memory. The original graphic, that is stored in the FPG or MAP archives of the
disk, will remain unchangeable. For that reason, if at a specific moment of the game the
aim is to recover the original state of the graphic, it is necessary to unload it from the
memory (with the unload_fpg() or unload_map() functions) and then, load it again.

N o t e :
When a graphic is put inside another one that is being used as a scroll region's background,
it will not automatically appear on screen unless the refresh_scroll() function is used.

R e t u r n s :
The colour of the pixel (0..255).

Descr ip t ion :
Allows us to obtain the colour of a graphic's specific pixel, as a return value of the function.
For that purpose, it requires the <file code> in which the graphic is stored, the <graphic
code> inside the file and the (*, y) coordinates of the graphic's pixel whose colour intended
t o b e o b t a i n e d .

The graphics loaded with the load_map<) function will be used as if they belonged to the
first file (the file with the code 0).

N o t e s :
This function is normally used to detect zones inside the graphics. This technique is called
hardness maps and it allows us to use two different graphics, one with the picture and the
second with the zones to detect, painted in different colours.

For instance, in a game with spacecraft, the zones that take energy away from the
spacecraft when passing over it with a specific colour (for instance, colour 32) could be

Page 1B7

painted In this hardness map. Then, the colour would be obtained from the hardness map
over which the spacecraft is and, if it is 32, energy would be taken away from it.

That is to say, there would be two different pictures: one of them visible, with colours (the
background picture over which the spacecraft moves in the game, and the other, the
hardness map that would only be used to obtain colours from it with the
map_get_pixel() function, identifying so the zone of the original picture over which the
spacecraft Is.

D e s c r i p t i o n :
Puts a graphic inside another one. The graphic that Is going to be copied is called origin
graphic and the destination graphic Is that Inside which the origin will be copied. That is to
say, this function allows us to copy a graphic (origin) Inside another one (destination).

Both graphics must be in the same file. The parameters are the following ones. In order;

<f!le> - file code with the graphics library that contains both graphics. The graphics loaded
with the load_map() function will be used as If they belonged to the first file (the file with the
code 0).

<destlnatlon graphio - code of the graphic inside which the other one is going to be put.

<origin graphio - code of the graphic that Is going to be copied In the destination.

<x>, <y> - coordinates inside the destination graphic where the aim is to put the origin
graphic. The center (or control point numljer 0) of the origin graphic will be located In these
c o o r d i n a t e s .

This function will modify fhe Indicated graphic, but only Its copy that has been loaded in the
computer's memory. The original graphic, that Is stored In the FPG or MAP archives of the
disk, will remain unchangeable. For that reason, if at a specific moment of the game the
aim Is to recover the original state of the graphic, it Is necessary to unload It from the
memory (with the unload_fpg() or unload_map() functions) and then, load it again.

N o t e s :

The map_xputO function is a version a little more complex than the map_put() function, but
with much more utilities. Thus, the latter allows us, moreover, to put rotated, scaled, mirror
and transparent graphics.

The map_block_copyO function must be used to put a part of a graphic (instead of the full
graphic) inside another one.

When the map_putO function (or any other similar) Is used to modify a graphic that is being
used as background of a scroll window. It is possible that the graphic you have put does not
immediately appear on screen. To solve this problem, you must use the refresh_scroll()
f u n c t i o n .

Page 188

Description:
Allows us to modify the colour of a specific pixel of a graphic. For that, the <flie code> where
the graphic is stored, the <graphic's code> inside the fiie and the (*, y) coordinates of the
pixei whose <coiour> is intended to set are required.

The graphics ioaded with the load_map() function wili be used as if they belonged to the
first fiie (the file with the code 0).

This function wili modify the indicated graphic, but only Its copy that has been loaded in the
computer's memory. The original graphic, that is stored in the FPG or MAP archives of the
disk, wlii remain unchangeable. For that reason, if at a specific moment of the game the
aim is to recover the original state of the graphic, it will be necessary to unload it from the
memory (with the unload_fpg() or unload_map() functions) and then, load if again.

N o t e s ;
The map_put() or map_xput() functions may be used to put a full graphic inside another
one (and not only at one pixel). The map_block_copy() function may be used to put just a
part of a graphic inside another one.

When the map_put_pixel() function is used to put a pixel in a graphic that is being used as
background of a scroti window, if is possible that this pixei does not immediately appear on
screen. To solve this problem, you must use the refresh_scroll() function.

D e s c r i p t i o n :
Extended version of the map_put() function.

Puts a graphic inside another one. The graphic that is going to be copied is called origin
graphic and the destination graphic is that inside which the origin wili be copied. That is to
say, this function allows us to copy a graphic (origin) inside another one (destination).

Both graphics must be in the same file. The parameters are the following ones, in order:

<file> - fiie code with the graphics library that contains both graphics. The graphics loaded
with the ioad_mapO function will be used as if they belonged to the first fiie (the file with the
code 0).

<destlnation graphio - code of the graphic inside which the other one is going to be put,

<origin graphio - code of the graphic that is going to be copied in the destination,

<x>, <y> ■ coordinates inside the destination graphic where the aim is to put the origin
graphic. The origin graphic is going to be copied at these coordinates, from its upper left
c o r n e r .

Page 189

<angle> - angle (in degree thousandths) In which the origin graphic is going to be copied;
the normal angle Is 0.

<si2e> - size (in percentages) in which the original graphic is going to be copied; the
norma l s i ze i s 100 .

<f!ags> - Indicates the mirrors and transparencies with which the original graphic wiil be
copied in the destination: the values are the following ones:

0-Normal graphic
1 - H o r i z o n t a l m i r r o r

2 - Ve r t i c a l m i r r o r
3-Horizontal and vertical (180°) mirror
4-Transparent graphic
5-Horizontal transparent and mirror
6-Ver1ical transparent and mirror
7-Horizontal and vertical transparent, mirror

This function will modify the indicated graphic, but only its copy that has been loaded in the
computer's memory. The original graphic, that is stor̂ in the FPG or MAP archives of the
disk, will remain unchangeable. For that reason, if at a specific moment of the game the
aim is to recover the original state of the graphic, it will be necessary to unload it from the
memory (with the unload_fpg() or unload_mapO functions) and then, load it again.

N o t e s :

The map_xput() function is a little more complex than the map^put() tunction. which is
easier to use when it is not required to put rotated, scaled, mirror and transparent graphics.

The map_block_copy() function must be used to put a part of a graphic (instead of the full
graphic) inside another one.

When the map_put() function (or any other similar) is used to modify a graphic that is being
used as background of a scroll window, it is possible that the graphic you have put does not
immediately appear on screen. To solve this problem, you must use the refresh_scrollO
f u n c t i o n .

move scrol l fcscrol l number>l

D e s c r i p t i o n :
Forces to scroll automatically and immediately. This function is rather advanced and, for that
reason, it could be difficult to understand its purpose.

As a parameter, the function requires the <scroll number> from 0 to 9 that was indicated in
the start_scroll() function as first parameter when the scroll started.

This function is used when a scroll region is automatically controlled, as the camera field of
the scroll structure corresponding to the identifier of a process has been defined.

The purpose is to force the (xO, yO, x1 and y1) values of that structure to be updated, if this
function is not used, these values won't be updated until the following game's frame. That is

Page 190

to say. when a scroll is aulomatically controlled and another process needs to know the
value of the coordinates of that scroll before the next frame (normally to be located in a
position in keeping with the background movement), do as follows:

1 - The scroll starts with start_scroll().

2 - The process that will be used as camera Is created and its Identifying
code is put in the camera field of the scroll structure.

3 - A very high priority must be set for this process, for it to run before the
rest of the processes (putting in its priority local variable a positive whole
value like, for instance. 100).

4 - The move_scroll() function will be called just trefore the FRAME
statement of the process' loop used as camera.

Thus, you will guarantee the previous execution of this process and. just at the end. the
updating of the values (xO. yO, x1 and y1) of the scroll structure, so the rest of the
processes may use these variables already updated.

The most widespread use of this function the aim Is to have more than two backgrounds
in a scroll window. For that, a series of processes simulating a third or fourth plane are
created. The position of their coordinates will depend on the exact position of the scroll in
every frame.

m o v e t B X t (< t e x t i d e n l i fl e o . < x > . < v > >

Descr ip t ion :
IVIoves a text towards other screen coordinates, The text Identifier and the (x. y) screen
coordinates towards which the text must be moved are specified as parameters. The
identifier of fhe text is a numeric code returned by the write() and write_int() functions
when they are required to write a text.

The centering code specified in the wrlte() or wrlte_lnt() functions will remain when this
f u n c t i o n i s u s e d .

The specified coordinates always deal with the screen and may be in or out of it. It Is
necessary to use the text_z global variable to modify the z coordinate of the texts (the
depth plane In which they appear).

N o t e :

To delete a text definitively, the text Identifier is also required, and the delete_textO
func t i on mus t be used f o r t ha t .

Page 191

R e t u r n s :
A new angle closer to the final angle.

Descr ip t ion ;
Brings an angle closer to another one at the given increment. The function returns the new
angle.

It is used when the aim is that an angle (<angle>) gradually varies until it becomes another
angle (<final angle>). For that, the function needs the original angle, the final angle and
the angular Increment that is going to be added to or subtracted from the original angle.

Keep in mind that all the angles are specified in degree thousandths. The angular
Increment is txjt a small angle (such as one degree (1000) or five (5000).

o u t r 6 a l o n i < i d B n t i f v i n Q c o d e > . < r e Q l Q n n u m p e r > i

R e t u r n s :

True if the process is out of the region or False if it is not.

Descr ip t ion :
This function determines whether a process is out of a screen region. For thaf, the function
requires the identifying code of the process and a number of region.

The screen regions can be defined with the define_region() function and they are simply
rectangular zones of screen.

Region number 0 can not be defined, as it will always tie equivalent to the entire screen.
Therefore, if 0 is specified as a second parameter, this function detemnines whether a
process is out of the screen (if it is not seen).

In case that the process' graphic is out of the specified region, the function returns True (an
odd number). Otherwise, if the graphic is seen in that region, even partially, the function
returns False (any even number).

The process whose Identifying code is indicated must have its graphic correctly defined
(nonnally in its graph variable). Otherwise, the system will notice an error, since it is not
possible to calculate the dimensions of a graphic if the process lacks it.

olav cd(<track numbeo. <mode>)

D e s c r i p t i o n :
Starts playing a cd-audio track. The track number (from 1 to the number of songs contained
in the cd) must be indicated. The way to do it is as follows:

Page 192

M o d e :

0 - To play the song and then stop,
1 - To play this song and then the following ones.

N o t e s :

To have a song indefinitely playing, a loop must be implemented, using the is_playlng_cd()
function to determine when the song is over.

The cd-audio reproduction volume can be controlled with the setup structure and the
set_volume() function.

R e t u r n s :

The first expression raised to the second one.

D e s c r i p t i o n :
Caiculates the resuit when the first expression is raised to the second one.

For instance, pow(3. 2) will return 9. which is 3 squared, that Is to say, 3=, or 3*3.

N o t e :

Tal<e into account that in the language it Is only possible to use integers within the
(min_int... max_int) range. Therefore, when the result of the function exceeds this range,
incorrect results will l>e shown. In this case, the system won't notice any error, so much
c a r e m u s t b e t a k e n .

D e s c r i p t i o n :
Puts a graphic in the screen background. The function requires the file code in which the
graphic is stored, the graphic code inside the same file and the (*, y) coordinates at which
the graphic Is Intended to be put.

The graphics loaded with the Ioad_map0 function will be used as if they belonged to the
first file (the file with the code 0).

If the center graphic was not specified (setting Its control point number 0 from the painting
tool), the coordinates will be referred to the position or the screen in which the graphic
center will be located.

The graphics displayed on the screen background like this will be within the game's display
under all the processes, scroll regions, texts, etc.

If the aim is to have a graphic over some others, It must be created as a new process and
Its z variable must be established, indicating the priority of Its display.

Page 193

The clear_screen() function must be used to clear the screen baclrground

N o t e s :
If the graphic that is intended to be put is merely a baclrground screen, it is easier to use the
put_screen() function, since it does not require the screen coordinates, because it will
automatically center the graphic on the screen.

The xputQ function is a little more complex than the put() function, but has more features
since, at the same time, it allows us to put rotated, scaled, mirror and transparent graphics.

To put a graphic inside another one (instead of in the screen background), the iTiap_putO or
map_xput() functions must be used.

D e s c r i p t i o n :
Establishes the colour of the pixel located in the background screen's (*, y) coordinates.
That is to say, it sets a pixel of the indicated colour in the indicated coordinates.

The pixels put with this function in the background screen will be displayed in the game
below all the processes, scroll regions, texts, etc.

If the aim is to see a pixel over other graphics, you must create a new process, assigning
the picture of a point (in its graph variable) as a graphic and fixing its z variable with the
priority of its printing.

To clear the background screen, the clear_screen() function must be used.

N o t e s :

To read the colour of a specific background screen colour, the get_pixel() function must be
used, returning a number tjetween 0 and 255 corresponding to the order of the colour inside
the palette.

The put() function must be used to set a graphic on the screen, instead of a simple pixel.

It is also possible to set the colour of a pixel in a specific graphic, instead of in the
background screen, by using the map_put_pixel() function.

out screen(<file>. <araphic>)

Descr ip t ion :
Establishes the background screen. The function requires the file code in which the graphic
is, and the own code of the graphic intended to be displayed in the background screen
ins ide t he fi l e .

The graphics loaded with the load_map() function will be used as if they belonged to the
first file (the file with the code 0).

The function does not require any coordinate as a parameter since, if the graphic size (in
pixels) is different from that of the screen, the former will simpfy be displayed centered in the
f a t t e r.

The clear_screenO function must be used to clear the screen bacfrground.

N o t e :
If the aim is to display a graphic on a specific part of the screen or a graphic that is not
centered, the putO may be used, fyforeover, the xput() function allows us to display rotated,
scaled, mirror and/or transparent graphics in any screen region.

randkminimum valuB>. <maximum valu6>>

R e t u r n s :
A random numeric value.

Description:
Returns a random number (chosen at random) between the minimum value and the
maximum value, both included.

This function is normally used to set all Ihe parameters intended to be varied in a game
when it is restarted. For instance, the coordinates of an enemy may be initialised with
random numbers, so it may appear in a different position in every game.

This function has another use. Thus, if we want that an action does not atways occur, but
that it has a certain probability to occur, we normally use a statement of the following type:

IF(rand(0 ,100)<25)
/ / Act ion . . .

E N D

In this case, the action will take place, on average. 25 per cent of the times the IF
statement would be executed. The reason for that is that, on obtaining a random number
between 0 and 100, this numtier would be less than 25 in a fourth of times, approximately.
N o t e :

By default, the values relumed by the rand() function will completely be different in every
execution of the program. If we want to have always the same series of numbers, we may
use the rand.seedQ function, specifying a number behind which the series of numbers
returned by the rand() function will always be predetermined.

rand seccH<numeric value>>

D e s c r i p t i o n :

This function sets a seed for the generator of random numbers (the numbers generated by
he rand() function).

The seed can be any integer within the range (min_lnt... max_int). If the seed is set, ail
the numbers generated by the rand() function will be the same in every execution of the
program. That is to say, after having been established an origin seed, the rand() function
will return a series of numbers predetermined for this seed.

Descr ip t ion :
This function is used when a graphic that is being used as a background of a scroll region
has been modified with the map_put(). map_xput(), map_biock_copy() or
map_put_pixei() functions, in order to update it.

The parameter required by the function is the <scroll numbet> that was specified when the
scroll started with the start_scroii() function.

When a graphic that is being used as background of a scroll is modified, it is not
automatically updated on the screen. On the contrary, it is necessary to call this function for
that purpose.

Once the graphic has been modified, it wiil remain like this during the rest of the program
execution, unless the graphic is unloaded from the memory (with the unload_fpg() or
unioad_map() functions) and loaded again. In this case, the original slate of the graphic will
b e r e s t o r e d .

N o t e :
It can be noticed that, if the displaying graphic is at some coordinates out of the screeh. it
won't tje necessary to call this function, because the parts of the scroll that are gradually
appearing on-screen are automatically refreshed.

D e s c r i p t i o n :
This function rewinds an FLI/FLC animation to the beginning. This animation started with
the start_fli() function.

After having called this function, the animation will be displayed again from the beginning (to
display every frame of the animation, you must call the frame_fli() function).

The use of this function deals with the possibility of stopping an animation and repeating it
again from the beginning, without uhloading it (end_fil()) and loading it again.

If the aim is to perform an animation indefinitely, restarting when it Is over, then It Is not
necessary to use this (unction, since it will automatically be done with trame_fll(), it you
keep on calling once the animation is over.

Only one animation can exist at the same time. Thus, it is not necessary to specify any
parameter tor this function.

r e s e t s o u n d O

D e s c r i p t i o n :
Advanced function, only tor very expert users. Resets the sound system.

This function is used to activate new parameters of the sound hardware.

The following values of the setup global structure must be established:

se tup .ca rd
se tup .po r t
se tup . l rq
s e t u p . d m a
s e t u p . d m a 2

This function is normally used inside the sound setup programs.

To activate the rest of the values of the setup structure, those referred to the mixer volume,
the set_volumeO function must be called. The values to establish the volume are the
following ones:

s e t u p . m a s t e r
s e t u p , s o u n d _ f x
s e t u p . c d a u d i o

H<nttial colouo. <number of colours>, <increment>l

Descr ip t ion ;
Rotates a range of palette colours. This function is used to create movement effects in static
graphics, like the effect of flowing water.

To use this function, it is first necessary to create graphics that use a range of consecutive
colours of the original palette, in a perpetual cycle (for instance, colours ranging from 0 to
15, painting something with the colours 0,1, 2, 3 14,15, 0,1, 2,...).

Then, it is necessary to take care that those colours are not used by other graphics that are
going to appear on the screen at the same time, if you do not want to implement the effects
o n t h e m ,

" ^ s s a r Page 197

The increment (third parameter) is normally 1 to perlorm the rotation in a direction and -1 to
perform it in the opposite direction, but other values may be used to perform the colours
cycle at higher speed.

To perlorm a cycle of colours from 0 to 15, it would be necessary to specify 0 as <initiai
colour> and 16 as <number of coiours>.

N o t e s :
II the aim is to determine the palette with which the cycle ol colour must be performed,
this palette must be loaded from an archive with the load_pal() function.

To perform other palette effects without replacing some colours by other ones in cycles, the
fade() function must be used. This function allows us to perform many colours lading and
saturations at different speeds.

There are two simplified versions of this last function that allow us to carry out a fading to
black (fade_oft()) and to undo it (fade_on()).

saveforchive name>. <OFFSET datum>.

D e s c r i p t i o n :
Saves a data block Irom the program memory to a file in the disk, to recover it later, when it
is required, with the load() lunclion.

For that, the function requires the archive name, the offset (inside the computer memory)
ol the variable, table or structure stored on the disk (the datum offset is obtained with
OFFSET <datum name>) and the number of memory positions that this datum occupies
(which may be obtained with sizeof(<file name>)).

It is possible to save several data (variables, tables or structures) if they have consecutively
been defined inside the same section (GLOBAL, LOCAL or PRIVATE), in this case, the
OFFSET of the first datum must be indicated as a second parameter, and the additioh of
the sizeofO of ail fhe data must be indicated as a third parameter.

It is not necessary to specify a path together with the archive name.

set fps<<n. of frames tier second>. <n. of allowed omission5>

Descr ip t ion :
This function regulates the games' speed: it defines the game's number of frames per
second that will be displayed.

By default, the display will be regulated at 18 frames per second, which means that if a
process moves a pixel per every (FRAME), it will move on-screen at a speed ol 18 pixels
per second.

This funchon may establish the number of Frames Per Second (FPS) from a minimum of 4
to a maximum of 200; in general, no more than 24 frames per second are necessary to
obtain a fluid and slight movement.

The second parameter, maximum number of allowed omissions, is referred to how the
program must preferably work when it is executed in a computer fast enough to calculate
the required number of frames per second. It works as follows.

Number of al lowed omissions.

0 - The game will go at slower speed when it is executed in a computer too
slow. That is to say, it will display the frames per second that the computer
has had time to calculate.

1 - If the computer can not calculate all the frames, it is allowed to
occasionally omit any frame to try to keep the game's relative speed. The
game movements will become a little more abrupt, but faster.

2 or more - The game is allowed to omit as many consecutive frames as It
is indicated in this parameter to maintain the original relative speed of the
game. For instance, If the number of omissions Is set at 4 and in the game
a process moved one pixel by one, in a very slow computer it could move
even in four pixels at a time.

s e t m o d e < < n e w v i d e o m o d e > l

Descr ip t ion :Establishes a new video mode for the game execution. The allowed videomodes that may
be specified as a parameter are the tollowing ones:

m320x200 - VGA standard
m 3 2 0 x 2 4 0 - X M o d e
m320x400 - X fylode
m 3 6 0 x 2 4 0 - X M o d e
m360x360 - X Mode
m376x282 - XMode
m640x400 - SVGA VESA
m640x480 - SVGA VESA
m800x600 - SVGA VESA
m1024x768 - SVGA VESA

When a change of the videomode in the program is made, a fading to black (of the
program's colours palette) will automatically be performed and in the following displays, the
colours palette will gradually be restored. That is to say, set_modeO always performs a
fade_otf() just before changing the videomode and a fade_onO just after having changed it.
By default, all the programs start with the 320 by 200 pixel activated mode
(set_mode(m320x200)).

By using the set_modeO function, all the scroll and mode 7 windows that were activated in
the game, as well as all the processes displayed inside them, will be deleted.

s e t v o l u m e n

Descr ip t ion :
Advanced function, only for very expert users. Adjusts tfre different volume controls
managed by the mixer of the system sound.

To adjust the volume, the following values of the setup global structure must be set;

setup.master - General volume
setup.soundjx - Sound effects volume
setup.cd_audio - Cd-audio music volume

This function is normally used inside the sound setup programs, or even In the rest of the
programs, normally to adjust the CD_Audio music volume.

To activate the rest of the values of the setup structure (those referred to the sound card's
parameters) the reset_sound() function must be called with the following defined values of
t h e s t r u c t u r e :

s e t u p . c a r d
se tup .po r t
s e t u p . l r q
s e t u p . d m a
s e t u p . d m a 2

s i a n a i < < i d > . < s i a n a l >)

Descr ip t ion :
Sends a signal to a process (an object of the game). This function Is mainly (but not only)
used to destroy (to kill) a process from another one, sending it a s_kill signal.

Any process may send a signal to another one, provided that the former has the identifying
code o f the la t te r.

The signal types that may be sent to a process are the following ones;

s_klll - Order to kill the process. The process will not appear In the following frames of
the game any longer.

s_sleep - Order to make the process dormant. The process will remain paralysed,
without executing its code and without being displayed on screen (nor being detected try
the rest of the processes), as If it had been killed. But the process will continue to exist in
the computer's memory.

sjreeze - Order to freeze the process. The process will remain motionless without
running its code. But it will continue being displayed on screen and It will be possible to
detect it (in the collisions) by the rest of the processes. The process will continue to exist
in the computer's memory, even If its code Is not executed.

s.wakeup - Order to wake up the process. It returns a slept or frozen process to Its
normal state. The process will be executed and displayed again from the moment that it
receives this signal normally. A process that has been deleted (killed) can not be
returned to its normal state, since it does not exist in the computer's memory any longer.

A process can also send these signals to itself, taking Into account that the Identifying code
of a process is always ID (word reserved In the language to this purpose). The statement
w o u l d b e a s f o l l o w s :

s igna l (ld ,<s igna l>)

Self-deleting a process in this way, sending a s_kill signal to itself, will not instantaneously
destroy the process, but in the following (FRAME) display. The RETURN statement can be
used to immediately delete a process. All the signals sent to processes will be
Implemented just before the next display of the game, that is to say, in the next FRAME
of the game (not instantaneously).

Together with these four signals, there are other four signals that directly correspond to the
previous ones. They are: s_klll_tree, 8_sleep_tree, s_freeze_tree and s_wakeup_tree.

These signals are sent not only to the indicated process, but also to all the processes that
It has created. That is to say, if a s_klll_tree signal is sent to a process, the latter and all its
descendants (sons, grandsons,...) will be deleted as well as all the processes created by it
and the processes created by the latter.

An exception to these last four signals is when there is an orphan process, that is to say, a
process whose father (the process that called It) is already dead. The orphan processes will
not receive the signal when it is sent to a process from which they are descended as, on
their father having disappeared. It won't be able to send the signal to the processes it
c r e a t e d .

N o t e :
When a process is created, the system defines the son variable of the father with the
Identifying code of the son, and the father variable of the son with the identifying code of the
f a t h e r .

D e s c r i p t i o n :
This second meaning of the signal function is similar to the previous one, with the exception
that, Instead of sending a signal to a process from its identifying code, it allows us to send a
signal to all the processes of a specific type or to them and their descendants, when the
used signals are of the type s_kllLtree.

For instance, if several processes of the enemy type exist or may exist in a game, and the
aim is to freeze these processes (without freezing their descendants), the following
s t a t e m e n t w i l l b e u s e d :

signalfTYPE enemy. s_freeze);

Page 201

As it can be noticed, It is necessary to have the identifying code of a specific process in
order to send a signal to it. To delete a group of processes, it is necessary either that they
are of the same kind, that this group is made up of a process and its descendants, or that all
their identifiers are known (in order to send them the signal one by one).

It is possible to send a signal to a type of process, even if no process of this type Is being
executed In the game. But if a signal is sent to a process that has already been killed, with
its identifying code (first meaning of the signal statement), there is a risk that the identifying
code is now used by another process, which is going to receive the signal. This happens, for
instance, when the aim is to kill a process that has already been killed, as it is possible that
another different one is being killed

N o t e :

If the aim is to delete all the processes except the current one, the let_me_alone() function
may be used. This function sends a s_kili signal to all the processes, except the one that
e x e c u t e d t h i s f u n c t i o n .

s o u n (i (< s o u n d c o d e > . < v o l u m e > . < f r e a u

R e t u r n s :

The channel number through which the sound is played.

Descr ip t ion :
Plays the effect whose sound code is specified as first parameter. At first, the sound must
have been loaded from a PCfVI archive with the load_pcm() function. This function returns
the sound code corresponding to this effect.

As a second parameter, it is necessary to specify the volume at which the sound is
intended to be reproduced, taking into account that 0 is the minimum volume, and 256 the
m a x i m u m v o l u m e .

As the third parameter, you must specify the frequency (speed) at which the sound is
intended to be reproduced, being 256 the standard frequency that will reproduce the original
sound. With lesser values, the sound vriil be reproduced with more accentuated bass. On
the contrary, with higher frequency values, it will be reproduced with more accentuated
t r e b l e .

The function returns the channel number that can be used by the stop_sound() function to
stop the sound and by the change_soundO function to modify its volume or frequency.

There are 16 sound channels. Thus, up to 16 sounds may be simultaneously played.

R e t u r n s :
The entire square root of the expression.

Page 202

D e s c r i p t i o n :
Calculates ttie square root of the expression passed as a parameter, truncated to an
In teger.

For Instance, as a result, sqrt(IO) will return 3 and not 3.1623, which Is the real value
(approximately) of the square root of ten.

R e t u r n s :
T h e a n i m a t i o n ' s n u m b e r o f f r a m e s .

D e s c r i p t i o n :
Starts a FLI/FLC animation contained In the specified archive, in the coordinates (*. y) (the
upper left coordinate of the display window must be specified).

The path can be specified In the orchive name>. The path is not necessary if the archive is
in the DIV Games Studio directory or In a subdirectory whose name coincides with archive
extension (for instance. "fii\anima.fli").

The screen must hold the whole animation. That Is to say. if the animation occupies the
whole screen, the videomode must be fixed at first with the set_modeO function, starting
then the animation at the (0. 0) coordinate with the start_(ii() function.

For your information, the function returns the number of frames that the whole animation
comprises.

The system will automatically activate the colour palettes that the FLI/FLC animation could
have. This can cause problems dealing with the representation of other graphics or fonts of
the program, if they had beeh drawn with a different palette.

if the aim is to combine other graphics with animation on-screen, the latter must have just
one colour palette (which Is normally called "palette low FLI/FLC") and the graphics must
have been drawn with that same palette.

Once the animation has started, its frames will gradually be shown with respective calls to
f rame_fl i () .

It Is possible to have but one active animation at every time. Therefore, after having
started an animation with start_fll() and having been displayed with frame_fll(), this
animation must finish with the end_fll() function before starting another different animation.

N o t e :

The reset_fliO function allows us to rewind the animation, so that the frame_fll() function
continues to execute it from the beginning.

Page 203

r e a i o n > . < h e i g h t o f h o r i z o n > l

Descr ip t ion :
This is an advanced function wtiich requires a skillful user.

Creates a mode-7 display wrindow. That is to say, it displays a three-dimensional graphic in
a folded plane. In order to obtain this effect, this function will be called with the following
parameters:

<m7 number> - Up to 10 mode-7 windows can be created on-screen, numbered from 0 to
9. If the aim is to create but one, the best thing is to define window number 0. This number
will be necessary later to modify the window parameters, as the system will need to know
which one of the possible 10 mocfe-7 windows is intended to modify.

<file> - The graphics intended to be folded in the window must be in a file whose file code
must tie specified here, as a second parameter of the function. The graphics loaded with the
load_map() function will be used as if they belonged to the first file (the file with the code 0).

<graphic> - The third parameter must be the code of the main graphic that Is going to be
folded in the window and It must belong to the file previously indicated.

<external graphio - Here, it is possible to indicate either a 0, if the aim is not to see any
graphic beyond the graphic folded In the perspective, or a graphic code of the same file
that will be shown in the perspective beyond the main graphic, until it gets the horizon. The
height and width of this graphic must be powers of two, not higher than 8192 (these powers
of two are: 1,2,4. 8, 16. 32. 64. 128. 256. 512. 1024, 2048, 4096 and 8192). For instance, it
can be a 64 pixel width by 32 pixel height graphic. This graphic will also be shown folded.

<reglon number> - Here, the rectangular screen region In which the mode-7 Is going to be
shown, will be indicated. If 0 is indicated as a region number, this region will be shown on
the whole screen. The rest of regions must previously be defined with the deflne_reglon()
function (a region is but a rectangular zone of the screen).

<Height of the horizon> - The last parameter to indicate will be the distance, in pixels, from
the upper part of the window, where the horizon line is intended to be put. If the camera is
placed above the folded plane, then nothing will be displayed above the horizon line (this
space is normally filled with another scroll or mode-7 window). Otherwise, If the camera is
placed below the plane, then nothing will be shown below this horizon line.

Besides the call to the function, some values of the m7 global structure must be
Initialised for the window to work correctly. This is a structure of 10 records (one for
every possible mode-7 vrindow) and every record has the following fields:

Camera - Identifying code of the camera
Height - Height of the camera
D i s t a n c e - D i s t a n c e o f t h e c a m e r a

Horizon - Height of the horizon
F o c u s - F o c u s o f v i s i o n

Z - Depth plane
C o l o u r - E x t e r i o r c o l o u r

Impor tan t ;
In order to activate the mode 7 window it is essential to start the camera field as,
without this field, the window can not determine from where the folded plane must l>e

The camera will be placed in the folded plane, at the indicated distance of the process
whose Identifying code has been set in camera, orientated at its angle itself (the one
indicated by its angle local variable). The height at which the camera is located with
respect to the trottom will be that indicated in the height field.

See the help about the m7 structure for further information atiout these issues, or about
h o w t o a c c e s s t h e m .

H o w t o v i s u a l i s e p r o c e s s g r a p h i c s i n m o d e 7 .
To create a process whose graphic is displayed In the mode 7. its ctype local variable must
be defined as c_m7 (type of coordinate as mode 7 coordinate), which will be done with
the following statement:

c t ype=c_m7:

After this, the process will be displayed in the mode 7 with its graphic (graph) scaled
depending on the distance at which it is. The process must only modify its x and y variables
to move through the folded plane.

When a process belongs to the mode-7 (that Is to say. the value c_m7 has been
assigned to its local variable ctype):

• Its X and y variables will be referred to the folded main graphic's point above which the
process graphic will be placed.

• Its r variable will lose Its effect, as the graphics will appear in strict order of depth. This
variable will only be useful to indicate display priorities in graphics exactly placed in the
same depth plane.

• The process wil l automatical ly be deleted when the mode 7 window, to which the

process belongs, is deleted with the stop_mode7() function, or when the videomode Is
changed with the set_mode() function as, by doing so, the mode 7 windows will also be
d e l e t e d .

If there were several mode 7 windows, the process would be displayed In all of them by
default. If the process had to be displayed just in one of them. Its cnumber local variable
should be then defined. For Instance, If there were 6 mode 7 windows (from number 0 to
number 5) and the aim was to display a process only In windows 0 and 2, the following
s ta temen t shou ld be i nc l uded I n I t :

c n u m b e r = c _ 0 + c _ 2 ;

Page 205

For a process to have several graphics (several views), depending on the angle from which
it is observed, its graphic must be defined with the xgraph local variable (instead of the
graph variable). To define this variable, it Is necessary, at first, to create a table (of any
name), first indicating the graphic's number of views and then the graphics codes for
these views, starting with angle 0 and in an counterclockwise direction. For instance:

G L O B A L

views_car[]=4,100,101,102,103;

The table views_car would define 4 views: graphic 100 for angles near 0 degrees, graphic
101 for angles near 90 degrees, graphic 102 for angles near 180 degrees, etc.

And then, the xgraph variable must be initialised in the process code with the following
s t a t e m e n t :

xg raph=CFFSET v lews_car :

To get an example about what we have just seen, examine some of the DIV Games
Studio's sample games that use this technique. Thus, read the comments about these
programs (for instance, see the program Speed (or dummies).

s t a r t s c r o l l (< s c r o l l n u m b e r > . < fi l e > .
r e q l o n > . < l o c k i n Q i n d i c a t o r > l

h i o . < b a c k a r o u n d i p h i o . < n u m b e r o f

Descr ip t ion :
This function has a certain complexity, requiring a skillful user.

Creates a scroll window, in which it will perform a view against a background graphic (the
decor of the game). That is to say, by using a graphic bigger than the display window as a
game background, a part of this graphic can be showed and shifted in any direction.

To obtain this effect, this function will be called with the following parameters:

<scroli number> - Up to 10 scroll windows can be created on screen, numbered from 0 to
9. If the aim is to create only one, the best thing is to define window number 0. This name
will later lie necessary to modify the parameters of the window, as the system will need to
know which one of the 10 possible scroll windows is intended to change.

<fiie> - The graphics that are intended to t>e shown as a background or d§cor in that
window must be in a file whose file code must be specified here, as a second parameter of
the function. The graphics loaded with the load_map() function will be used as if they
belonged to the first file (the file with the code 0).

cgraphio - The third parameter must be the code of the main graphic that is going to be
displayed as a background In the window and that must belong to the file previously
indicated. This graphic is normally the main ddcor of the game on which the action will be
developed. It is a graphic bigger than the display window, that will be shifted in one or
several directions and on which the graphics of the game will be placed.

Page 206

The scroll window will be Initially placed with the control point number 0 of this graphic in
the upper left corner, when this point has been defined in the graphic editor.

<background graphio - Here, 0 will be indicated if the aim is to obtain a single scroll plane
(a single background graphic), or another graphic code if it is intended that it appears as
scroll background (deeper), behind the foreground, in order to see this background plane, it
is essential that the main graphic (foreground) has parts painted in colour number 0 of the
palette, as these transparent zones will allow us to see the background graphic through
t h e m .

<region numbeo - The rectangular screen region in which the scroll Is going to be shown
will be here indicated. If 0 Is Indicated as a region number, it will be shown on full screen.
The rest of regions must previously be defined with the define_region() function (a region
is but a rectangular zone of the screen).

<locking indicator> - A value defining whether each of the two scroll planes Is horizontally
and vertically cyclical will be here indicated. For instance, a plane is horizontally cyclical
when, on leaving the picture on the right, the picture appears on the left. To obtain this
value, the following quantities must be added:

+ 1 - It the foreground Is horizontally cyclical
+ 2 - It the foreground Is vertically cyclical
+ 4 - If the background is horizontally cyclical
+ 8 - If the background is vertically cyclical

That is to say, 0 it none of the two planes must be cyclical, 15 (1+2+4+8) it both planes must
be cyclical in both axes, 12 (4+8) if only the background must be cyclical, etc.

When a (foreground or background) graphic is smaller than the display window, the system
will force it to have a cyclical scroll plane. Otherwise, the scroll window could not be
completely filled, without cyclically repeating the graphic (tile).

Besides the call to the function, some values of the scroll global structure must be
initialised for the correct working of the window .This is a structure of 10 records (one
for each possible scroll window) and every record has the following fields:

xO, yO - Foreground coordinates
x1, y1 - Background coordinates
z - Depth plane
camera - Identifying code of the camera
ratio - Background's relative speed
speed - Foreground's maximum speed
regloni - Rrst screen region
region2 - Second screen region

There are two ways to program the movement of the scroti windows:

• Manually, modifying in each frame of the game the fields xO, yO, x1 and y1 of this
structure (the scroll planes' coordinates).

• Automatically, for wfiat the Identifying code of a process Is needed in the field camera
of this structure. From then, the system will be in charge of following the graphic of this
process in the scroll window.

See the scroll structure either for further Information about these fields, or to know how to
a c c e s s t h e m .

H o w t o d i s p l a y p r o c e s s e s ' g r a p h i c s i n t h e s c r o l l ,
in order to create a process whose graphic is displayed in the scroll window, it is necessary
to define its ctype local variable as c_scroli (type of coordinate as scroll coordinate),
which will be done with the following statement:

c t ype=c_sc ro l l ;

After that, the process will be displayed in the scroll with its graphic (defined in the graph
local variable). The process must modified only its * and y variables to scroll.

When a process belongs to the scroll (assigning the value c_scroll to its local variable
ctype) :

• Its X and y variables will be referred to the point of the foreground's graphic on which the
graphic of the process will be placed.

• Its z variable will be now referred to the variables z of the processes that also belong to
the same scroll window. That is to say, each time that a scroll window is displayed, all
the graphics that belong to it (ranged by their z) will t)e displayed just after it. Then, the
processes that don't belong to that scroll window will continue to be displayed.

• The process will be automatically eliminated when the scroll window to which the
process belongs is eliminated with the sfop_scroll() function. Or when the videomode is
changed with the set_modeO function as, on doing so, the scroll windows will be also
e l i m i n a t e d .

If there were several scroll windows, the process would be displayed by default in all of
them. If it had to be displayed only in some of them, its cnumber local variable should t>e
defined. For instance, if there were 6 scroll windows (numbered from 0 to 5) and the aim
was to display a process only in windows 0 and 2, the following statement should be
inc luded in i t :

c n u m b e r = c _ 0 + c _ 2 ;

In order to observe an example of what it has been said, the best thing is to examine some
of the sample games of DIV Games Studio that use this technique. Thus, the reader is
directly referred to the comments of these programs (for instance, see the example
Hel iobal l) .

Page 208

D e s c r i p t i o n :
Turns the CD-Audio off. slopping tfie song tfiat was playing. Tfie songs are reproduced witti
tfie play_cd() function.

N o t e :
Tfte cd-audio reproduction volume may be controlled witfi the setup structure and the
set_volumeO function.

s t o p m o d e 7 f < n u m b e r o f m 7 > >

Descr ip t ion :
Deletes the mode 7 window whose number (from 0 to 9) Is passed as a parameter. This
<m7 number> was Indicated as first parameter In the start_mode7() function, and it Is
necessary as there can be up to 10 different mode 7 windows, and the system needs to
know which one Is finishing.

On deleting a mode 7 window, all the processes that exclusively belong to that window will
be killed automatically. These processes have their ctype variable with the c_m7 value and
they are not displayed In any other mode 7 window.

Impor tan t :
On changing the videomode with the set_mode() function, all the mode 7 windows (and
their processes) will also be deleted. In this case, it is not necessary to use this function
(s top_mode70) .

N o t e :
The creation of a mode 7 window Is a somewhat advanced process and it requires to start
several parameters, like that of the camera, some of them required by the start_mode70
function and some others contained in the m7 global stnjcture (like the m7,camera
variable).

s t o p 8 c r o l l (< s c r o l l n u m b e t >)

Descr ip t ion :
Deletes the scroll window whose number (from 0 to 9) is passed as a parameter. This
<scroll number> was indicated as first parameter in the start_scroll() function and it is
necessary since there can be up to 10 different scroll windows, and the system needs to
know which one Is finishing.

On deleting a scroll window, all the processes that exclusively belong to that window will
automatically disappear. These processes have their ctype variable with the c_scroll value
and they are not displayed In any other scroll window.

Page 209

Impor tan t :
On changing the videomode with the set_mode() function, all the scroll windows (and their
processes) will also be deleted. In this case, it is not necessary to use this function
(stop_scro l l ()) .

N o t e :

The creation of a scroll window is a somewhat advanced process and it requires the start of
several parameters, some of them required by the start_scrollO function and some others
contained in the scroll global structure (like the scroll.xO variable).

D e s c r i p t i o n :
Stops the sound that is being played through the channel, passed as a parameter.

The required <channel number> Is the value returned by the sound() function when the
reproduction of a sound effect starts.

There are 16 sound channels. Thus, up lo 16 sounds may simultaneously be played.

N o t e :
To slop a sound gradually, turning its volume down little by little, several calls to the
change_sound() function must be made to slightly reduce the channel volume until It
reaches level 0. Then, the stop_sound() can be called lo definitively slop the sound.

D e s c r i p t i o n :
Executes the operating system's command passed as a parameter.

N o t e s :
One of the utilities of this command is, for Instance, to delete a temporary archive that has
been created in the program, calling the command of the system DEL <archive name>.

The system can be blocked depending of the executed commands. In these cases you
must reset the computer. There is no guarantee dealing with this function running, due to
the multiple incompatibilities that can appear between the external commands and the
manager of Internal processes of DIV Games Studio,

D e s c r i p t i o n :
Unloads from the memory the font (the type of letter or the set of graphic characters)
whose code is passed as a parameter.

It is not necessary to unload the graphic before finishing the program, as the system will
do it automatically.

So. a graphic must be unloaded from the memory only when it is not going to be used for a
specific time and when the aim is lo free up the occupied space in the computer's memory
to load other resources (other graphics files, sounds, fonts, etc.). which will make sense only
with graphics ol a certain size, that is to say. big enough so as to be worth freeing up the
space they occupy.

N o t e :
The graphics individually loaded with the load_map() function will not be unloaded when file
number 0 (with code 0) is unloaded with the unloadJpgO function, even if these graphics
are used as if they belonged to it.

Desc r ip t ion :
Unloads the sound whose code Is passed as a parameter from the memory. This <souhd
code> is the value returned by the load_pcm() function when a new sound effect is loaded
in the memory.

After having unloaded a sound effect, much care must t>e taken not to go on using in the
program this effect (its code) lor the sound() or unload_pcm() functions. Otherwise, the
program could become blocked.

It is not necessary to unload the sound from the memory before finishing the program,
as the system will do It automatically.

Therefore, a sound must be unloaded from the memory only when It Is not going to be used
for a while and when the aim is to free up space occupied in the computer's memory to load
other resources (other graphics liles, sounds, fonts, etc.). which will be logical just with
sound effects of a certain length, that is to say, big enough so as to be worth freeing up the
space they occupy.

N o t e :

The stop_sound() functioh must be used to stop a sound effect, but keeping it in the
memory in order to be played again when desired.

 - The font code or type of letter that is going to be used. Here, you must put either
0 when the aim is to use the system's font (white, small font, 6 by 8 pixels), or the font code
returned by the load_fnt() function when a new font is loaded in the program.

<x>, <y> - The coordinates referred to the screen in which the text is going to be displayed,
firs t in the hor izon ta l ax is and then in the ver t i ca l one .

<centerlng code> - This code determines the position of the text specified by the previous
c o o r d i n a t e s . I t s v a l u e s a r e :

0 - U p l e f t 1 - U p 2 - U p r i g h t
3 - L e t t 4 - C e n t e r 5 - R i g h t
6 - D o w n l e f t 7 - D o w n 8 - D o w n r i g h t

For example, if a text is written at the 160, 0 coordinates and with the centering code 1 (Up),
then the text will center in the column 160 and it will be displayed from line 0 downwards.
Or, if the aim Is to have a text in the upper left corner, it must be displayed at the 0, 0
coordinates and with centering code 0 (Up left).

<text> - The text to be written as a literal (that is to say, a text in inverted commas) will be
specified as last parameter.

The displayed text will remain on-screen until it is deleted with the delete_text() function,
that requires as parameter the identifying code returned by write<).

The write_lnt() function must be used to display the numeric value of a variable (such as
the score of the player).

The texts will remain unchangeable on screen even if graphics are displayed on it or
processes' graphics pass before or behind them.

N o t e s ;

The depth plane in which the written texts appear is controlled through the text_z global
variable, that is useful to regulate which graphics must be seen above the texts and which
o n e s m u s t b e s e e n b e l o w t h e m .

Then, it will be possible to move the texts towards another position if necessary, by using
the move_text() function, which also requires the identifying code returned by wrlte() as
parameter.

When fonts loaded from archives FNT are used, the colours' palette used to generate
these fonts must be activated (see load_pal()). Otherwise, the colours may appear
changed, being the text incorrectly displayed.

write lnt(. <x>. <v>. <centerino code>. <OFFSET variablo)

R e t u r n s :

The identifying code of the text that has been written.

Page 213

Descr ip t ion :
This function is used to show the numeric value of a variable. For that, it requires the
following parameters:

 - The font code or type of letter that is going to be used. Here, it is necessary to
put either 0 when the aim is to use the system's font (white, small font. 6 by 8 pixels), or the
font code returned by the ioad_fnt() function when a new font is loaded in the program.

<x>, <y> - The coordinates referred to the screen in which the numeric value is going to be
displayed, first in the horizontal axis and then in the vertical one.

<centering code> - This code determines the position of the numeric value specified by the
previous coordinates. Its values are:

0 - U p i e f t 1 - U p 2 - U p r i g h t
3 - L e f t 4 - C e n t e r 5 - R i g h t
6 - D o w n l e f t 7 - D o w n 8 - D o w n r i g h t

For example, if a numeric value is written at the 160, 0 coordinates and with the centering
code 1 (Up), then the numeric value wili be centered in the column 160 and it will be
displayed from line 0 downwards. Or, if the aim is to have a numeric value in the upper left
comer, it must be displayed at the 0, 0 coordinates and with centering code 0 (Up left).

<OFFSET variabie> - The offset inside the computer's memory of the variable whose value
is intended to be displayed, must be specified as last parameter (the offset of the data is
obtained with the OFFSET operator).

The displayed numeric value wili remain on-screen until it is deleted with the deiete_text()
function, that requires as parameter the identifying code retumed by write_int().

Impor tan t :
During the time that the value of the variable appears on screen, this value will automatically
be updated every time the variable is modified. For that, new calls to write_int() are not
n e c e s s a r y .

The writeQ function must be used to display any kind of alphanumeric text (a fixed text).

The texts will remain unchangeable on screen even if graphics are displayed on it or
processes graphics pass before or behind them.

N o t e s :
The depth plane in which the written texts appear is controlled through the text_z global
variable, that is useful to regulate which graphics must be seen above the texts and which
o n e s m u s t b e s e e n b e l o w t h e m .

Then, it wili be possible to move the texts towards another position if necessary, by using
the move_text() function, which also requires the identifying code retumed by write() as
parameter.

When fonts loaded from archives FNT are used, the colour palette used to generate these
fonts must be activated (see ioad_pal()). I^therwise. the colours may appear changed,
being the text incorrectly displayed.

Page 214

Wa r n i n g :
It is not possible to display an expression, as it is shown below:

writejnt(0,0,0,0,OFFSET variable + 1);

To display the value of the variable plus 1. That is to say, if the aim was to display this value,
it would be necessâ either to add 1 to the variable or to create another variable, assigning
it the value of the original variable plus 1, for instance:

variable2 = variable + 1;
wr i t eJn t (0 ,0 ,0 ,0 .OFFSETvar iab ie2) :

in this case, you should take into account that you had to update the value of the variabie2
at least once every FRAME of the game, as by changing variable the value of var!abie2 will
not automatically be updated unless the varlabie2 = variable + 1 statement Is again
e x e c u t e d .

a n o i e > . < s i z e > .

Descr ip t ion :
Advanced version of the put() function to put a graphic on the screen background. This
function requires the following parameters, in order:

<tile> - file code with the graphics library that contains both graphics. The graphics loaded
with the ioad_map() function will be used as if they belonged to the first file (the file with the
code 0).

<graphio - code of the graphic inside the file that is going to be displayed on screen.

<x>, <y> - coordinates dealing with the screen where the graphic is intended to be put.
These coordinates reveal the position in which the graphic center (or the control point
number 0, if it is defined) will be placed.

<angie> - angle (In degree thousandths) in which the graphic is going to be displayed; the
normal angle is 0.

<size> - size (in percentage) in which the graphic is going to be displayed; the normal size
is 100 .

<fiags> - indicates the mirrors and transparencies with which the graphic will tje displayed;
the possible values are the following ones:

0-Normai graphic
1 - H o r i z o n t a l m i r r o r
2 - Ve r t i c a i m i r r o r

3-Horizontai and vertical (180°) mirror
4-T ransparent graphic
5-Horizontai transparent and mirror
6-Verticai transparent and mirror
7-Horizontal and vertical transparent, mirror

Page 215

<region> - Number o(region (window inside the screen) in which the graphic must be
displayed. This value will normally equal 0 to display the graphic at any position of the
screen. The define_region() function must be used to define a region.

The graphics displayed in this way on the background screen will be in the game display
below all the processes, scroll regions, texts, etc.

If the aim is that a graphic is above others, it is necessary to create It as a new process
and fix its z variable with the priority of its display.

The clear_screen() function must be used to clear the screen background.

N o t e s ;

The put() function is a simplified version of the xput() function, and it is useful when you do
not want to rotate, scale, mirror or display the graphic with transparencies.

The map_putO or map_xput() functions must be used to put a graphic inside another one
(instead of the screen background).

If the graphic intended to be put is just a screen background, it is easier to use the
put_screenO function, as it does not require the screen coordinates because it will
automatically center the graphic on screen.

Appendix C: Data Predirmed In The Language

CI - P red lfinad GLOBAL S t ruc tu rw

G L O B A L S T R U C T l o v

This gloBal structure is used to control the joystick. It contains a series of logical fields
related to the programming of this device: the stale of the buttons {whether they are pressed
or not) and the state of the mam lour confrol directions.

To access these fields, the riame of the field must be preceded by Ihe word joy and the
symbol . (period). For Instance, to access the left field (which indicates whether the left
contrci Is pressed), It is necessary to use joy.left.

left - This field will be at 1 when the joystick is orientated to Ihe left, and at 0 in the
opposite case.

right - This field will be at 1 when the joystick is orientated to the right, and at 0 in the
opposite case.

UE. - This fleid wiil be at 1 when the joystick is orientated up. and at 0 m the opposite case.

down • This field will be at 1 when the joystick is onenlated down, and af 0 in Ihe opposite
c a s e .

For Instance, to perforrri an action in a program when the joystick Is moved to the right
(joy.rlght), a statement like the following or>e must be Included in ihe code:

IF (joy.rlght)
// Action to perfonn (statements)

E N D

For diagonal positions, the two Itelds comprising this diagonal must be verified, For
Instance, to perlorm an action when the joystick Is in the upper right diagonal, the toiiowing
s t a t e m e n t w l i l b e u s e d :

IF (joy.up AND joy.rlght)
// Action to perform (statements)

E N D

buttonl. button2. butfon3 and button4 - These fields indlcale Ihe state of up lo four
joyslick's buttons, being af 1 when the respective button Is pressed, and at 0, when It is not.

Page 21B

Some joysticks only have 2 buttons. In this case, they will be buttons number 0 and 1. In
computers with two connected joysticks, the second joystick will have the buttons number 2
and 3.

Note: When an analogical reading of the joystick is required (to know the exact coordinates
at which the joystick Is located), It will be necessary to use the get Joy_positlon() function.
Obviously, this function will only be useful in an analogical joystick, and It won't work In the
digital ones.

G L O B A L S T R U C T m 7

This 10 record structure contains certain fields dealing with changeable parameters of the
mode 7 window. The ten records have the same field names, but each of them modifies
the parameters of a different mode 7 window (as up to 10 windows of this type may be
activated).

A mode 7 window could be defined as a screen region that shows a graphic plane three-
dimenslonally folded (for instance, like a sheet of paper with a picture horizontally
positioned, displayed on screen with a virtual bottom (or top).

For a record (numbered from 0 to 9) of the m7 structure to make sense, that mode 7
window (from 0 to 9) must first be activated with the star1_mode7() function (see this
function for further Information about the mode 7 windows).

It is understood that the fields of this structure are complementary to the call parameters of
this function. In order to observe a practical example of a mode 7, It is possible to access
the help about the start_mode7() function.

H o w t o u s e t h e m 7 s t r u c t u r e :

To access these fields, the field name must be preceded by the word m7, the number of
record In square brackets and the symbol, (period).

For Instance, If two mode-7 windows, number 0 and number 1 were Initialised, the camera
variable of both windows could be accessed as m7[0].camera and m7[1].camera,
respectively. When the mode-7 window number 0 Is accessed. It Is also possible to omit the
number of windows In square brackets. That Is to say, the m7,camera variable and the
m7[0].camera variable are, to all ends, the same for the language.

camera - Identifying code of the process followed by the camera. To move the camera
that controls the mode-7 view, only a mode-7 process must be created, a process having its
local variable ctype=c_m7, and its identifying code must be put In the camera variable of
this structure. After so, only the x, y and angle local variables of this process must be
modified and, for Instance, the advance() function must be used to move the camera
f o r w a r d .

For the mode 7 window to be activated, it is essential to initialise the camera field. Without
this field, the window can not determine from where the folded plane must be seen.

height - Height of the camera. This variable of the structure manages the distance to which
the camera Is placed from the bottom. By default, its value equals 32. Any positive number
will make the camera be placed upper as the number Is greater. If a negative number (less
than zero) is put in the height field of this structure, then the camera will be placed below
the folded plane, showing a "top" instead of a "bottom".

Two mode-7 images can be created within the same region: one as top and the other as
bottom (one with positive height and the other with negative height). In this case, it Is
Important to establish the z variable of the m7 structure of both, thus to determine the
depth plane In which each one must be painted.

distance - Distance from the camera to the followed process. The perspective of the camera
will always be positioned slightly behind the process whose identifier has been put In the
camera field of the structure. This is done for the graphic of the process used as a camera to
be seen, just In case this process has defined it (In its graph or xgraph local variable).

By default, the camera will tie positioned at 64 points behind the process. "Behind" means a
ptoint placed at the Indicated distance from the graphic In the angle opposite to that one to
which the process Is orientated. For instance, if the process Is facing right, 64 points to Its
l e f t .

horizon - Horizon's height. This Is the same value as that indicated as last parameter of the
start_mode70 function. Its initial value will equal to the one indicated In the call to this
function. The utility of this variable Is to make tfte horizon go up or down In every frame of
the game, depending on the needs of the latter.

On changing the horizon's height, the "facing up" and "facing down" effects will be
obtained in the mode 7 window.

focus - Focus for the camera. This variable controls the perspective of the camera. By
default. Its value equals 256, but any value ranging from 0 and 512 may be put, obtaining
different distortion effects of the three-dimensional plane.

That is to say, this field controls the angle got by the camera focus. The greater this value
is, the closer all the objects (processes) placed in the folded plane will be seen.

z_- IV1ode-7 display priority. To Indicate the depth plane In which this window must be
painted, with respect to the rest of processes. By default, this variable will equal 256, which
means that, as the processes have their local z variable at 0 by default, the mode-7 window
will be painted In a greater (deeper) depth plane, being the graphics of the processes
painted above the window. This situation may change by modifying the z variable of the
window (for instance, putting it at -1) or the z variable of the processes (for instance, putting
It at 257).

Page 220

colour - Colour for the mode-? exterior. When, in the call to the start_mode7() function,
any external graphic is not specified (the fourth call parameter Is put at 0), this variable will
control the colour in which it is aim to paint the exterior. In other words, the colour that the
screen must be painted in beyond the graphic that is being folded (beyond its limits).

By default, this field is initialised at 0, which is normally the black colour in the colour palette.
Therefore, if this field is not assigned another value (and an external graphic is not defined)
the screen will be seen in black beyond the foreground.

This global structure is used to control the mouse. It contains a series of fields related to the
programming of this driver, such as the screen position, the pointer graphic, the state of the
buttons, etc.

In order to access these fields, the name of the field must be preceded by the word
mouse and by the symbol . (period). For instance, in order to access the field *
(horizontal coordinate of the mouse pointer), it is necessary to use mouse.x.

X. V - Horizontal and vertical coordinates of the mouse. It will be necessary to read only
these two fields (mouse.x and mouse.y) to know the position of the mouse cursor on
screen. To position the mouse at other coordinates (to force its position), assign the new
c o o r d i n a t e s t o t h e s e t w o fi e l d s .

graph ■ Graphic code assigned as a mouse pointer. By default the mouse won't be
visible. To make it visible, it is necessary to create the graphic that is going to be used as a
pointer in the graphic editor, to load it in the program (with the load_fpg() or load_map()
functions, depending on whether this graphic has been stored in a tile FPG or in an archive
MAP) and finally, to assign its graphic code to this variable (mouse.graph). Then, the
mouse pointer will tie seen on screen.

The center of the graphic will appear at the mouse.x, mouse.y coordinates, unless its
control point number 0 has been defined in the graphic editor. If this point (usually called
hot spot) is defined, then it will appear at the coordinates indicated in the fields mouse.x
and mouse.y.

For instance, if an arrow is created to depict the mouse pointer (as it happens dealing with
the mouse pointer of DiV Games Studio), the hot spot (control point number 0) will be
defined in the upper left comer of the graphic, as it is the active point inside the graphic.
Then, when the mouse was located at the (0, 0) coordinates, for instance, the "tip of this
arrow" would precisely be located at those coordinates.

file - File code containing the graphic. The file code containing the graphic of the mouse
pointer is defined in this field. It Is not necessary to indicate a value here if fhe graphic was
loaded from an archive MAP, or if it is stored in the first archive FPG loaded in the
program. Otherwise, mouse.flle will have to be assigned the file code that returned the
load_fpg() function on loading the file that contains the graphic of the mouse pointer.

z - Priority of ttie graphic display, indicates the depth plane in which the graphic of the
mouse pointer must be displayed. By default this field will be equal to -512, which implies
that the pointer will t)e seen above the rest of graphics and texts. The bigger this field
is. the deeper the mouse pointer will be located.

If the aim was to make a graphic of a process appear above the mouse pointer, suffice
would be to assign an Integer less than -512 (for instance, -600) to the local z variable of
that process.

angle - angle with which the graphic of the mouse pointer will be seen. The value of
mouse.angle by default is 0, which implies that this graphic won't be seen rotated, unless a
new angle Is assigned to this field.

Keep in mind that the angles must be specified in degree thousandths. For Instance, the
mouse.angle=90000; statement will make the pointer appear rotated 90 degrees.

size - Size of the graphic In percentage. By default, this field will be equal to 100 (the
graphic will be seen 100%). Then, It Is not necessary to Indicate another value here, unless
the aim Is to scale the graphic (to display it expanded or reduced).

If, for Instance, the aim was to double the original size of the graphic (being displayed at
200%), the mouse.slze=200; statement should be used.

flags - In this field, different values will be indicated when the aim is to mirror the graphic of
the mouse (that is to say, horizontally or vertically inverted), or to display It as a (semi)
transparent graphic. The possible values that can be assigned to the mouse.flags are the
following ones:

0-Normal graphic (value by default)
1 - H o r i z o n t a l m i r r o r

2 - \ / e r t l c a l m i r r o r

3-Horizontal and vertical mirror (180°)
4-Transparent graphic
5-Transparent and horizontal mirror
6-Transparent and vertical mirror
7-Transparent, horizontal and vertical mirror

region - Graphic's clipping region. A value must be assigned to this field just when the aim
Is to make the mouse pointer visible only Inside a region (a rectangular zone of the
screen). In order to achieve it. It Is necessary first to define this region with the
define_reglonO function and then, to assign the number of the region that has been
defined to this field (mouse.reglon).

By default, this value will be equal to 0, that is a number of region referred to the entire
screen. Therefore, the graphic will be seen on the whole screen.

left, middle and right - These three fields store logical values (0 or 1) depending on
whether the mouse buttons are pressed or not (they correspond with the left, central and

Page 222

right mouse buttons). Normally, only two buttons of the mouse (left and right) are activated,
being Ignored the state of the central button. This depends on the mouse driver installed In
the computer.

For Instance, to perform an action In a program when the mouse left button is pressed
(mouse.left). It Is necessary to include the following statement In the code:

IF (mouse. lef t)
// Action to perform (statements)

E N D

G L O B A L S T R U C T s c r o l l

This 10 record stnjcture contains certain fields related to changeable parameters of the
scroll windows. These ten records have the same field names, but each of them modifies
the parameters of a different scroll window (as up to 10 windows of this type can be
activated).

A scroll window could be defined as a screen region that only shows a part of a graphic
bigger than that window (this graphic is normally the decor or background of the game).
The scroll is the movement of that vinndow through the graphic In any direction, being
displayed the entire graphic little by little, section by section.

For a record (from 0 to 9) of the scroll structure to make sense, that scroll window (from
0 to 9) must first be activated with the start_scroll() function (for further information about
the scroll windows, see this function).

It Is understood that the fields of this structure are complementary to those of the call
parameters of this last function.

H o w t o u s e t h e s c r o l l s t r u c t u r e :

To access these fields, the field name must be preceded by the word scroll, the record's
number In square brackets and the symbol, (period).

For Instance, If two scroll windows, number 0 and number 1, are initialised, it can be
possible to access the camera field of both windows as scroll[0].camera and
scroll[1].camera, respectively. Moreover, when the scroll window number 0 Is accessed, it
Is possible to omit the window's number In square brackets. That is to say, the
scroll.camera and the scroll[0].camera variables are, to all intents and purposes, the
same for the language.

xO, vO - Coordinates of the scroll's foreground, when the scroll ISN'T automatic (the camera
field has not been defined). These are the fields that will have to be modified In order to
move the scrol l window's foreground.

Page 223

These two fields store the horizontal and vertical coordinates of the upper left corner of the
scroll window (the point of the foreground's graphic that will be seen in the window's upper
left corner).

When the camera field of this structure has been defined, the movement of the scroll
window will be automatic: thus, they are read-only fields. In order to check where the scroll
Is at every moment (see the move_scroii() function).

x1. v1 - Background's coordinates, when a graphic for the background has been defined.
When the scroll ISN'T automatic (the camera field has not been defined), these are the
fields to modify in order to move the background of the scroll window.

When the camera field of this structure has been defined, the movement of the scroll
window will be automatic; thus, they will tie read-only fields, and the definition of the
background's movement speed will depend on the ratio field of the same structure.

z - Scroll display priority, to Indicate the depth plane In which this window must be painted,
with respect to the rest of processes. By default, this variable will equal 512, which implies
that, as the processes have their local z variable at 0 by default, the scroll window will be
painted in a greater (deeper) depth plane, being the graphics of the processes displayed
atjove the window. In order to vary this situation, it is possible to modify either the z
window's variable (for instance, putting it at -1) or the z processes' variable (for instance,
putting it at 600).

camera - It is not necessary to initialise this field, as it will be initialised when the aim is that
the scroll is automatic, that is to say, that the system deals with it to follow a process (a
game's graphic) always. For that, it is necessary to put the process' identifying code in this
field. Thus, the shift of the scroll window will pass to be controlled automatically by the
system, always trying to center the graphic of this process in the window. This process must
have the ctype lo^ variable with the value c_scroil.

By default, this field will equal 0, which implies that the scroll won't foltow any process,
unless the identifying code of a process is assigned to camera. When it is done, this
process will be known as the scroll's camera process.

Note: A series of fields are now shown only for automatic scroll windows. It means that
for those fields to make sense (and, therefore, effect), the camera field of this structure has
to be defined previously with the identifying code of the process that Is going to be
centered in the scroll. These values will affect the way in which the process called scroll
camera is going to be followed.

ratio - Automatic scroll windows. When two scroll planes have been defined in the call to
the start_scroil() function. In this field it is possible to define the movement speed of the
background with respect to that of the foreground. By default, this value will equal 200,
which implies that the background will move hall the speed of the foreground; if It is defined
as 400, it will move at the fourth part (four times slower), 100 at the same speed. 50 at
double speed of the foreground, etc.

Page 224

sfieed - Automatic scroll windows. Maximum speed of ttie scroll foreground, wfilcti will
equal 0 by default. It means ttiat no speed limit is imposed. If a limit is imposed, specifying
ttie maximum number of points ttiat the foreground can be shifted for every game's frame,
the camera process will be uncentered in the scroll window when it is moved at a higher
speed.

''eqlom - Automatic scroll windows. Scroll lock region, whose value by default equals -1,
which means that there is no lock region. If this field is defined with a number of region (a
rectangular zone of the screen previously defined with the define.reglonQ function), then
the system won't scroll as long as the camera process remained Inside it.

reglon2 - Automatic scroll windows. External region ol the scroll. By default, its value is
equal to -1, which means that there Is no external region. If this field is defined with a
region's number and a maximum speed has been defined in the speed field, then the
system will Ignore that speed limit when the camera process is going to exceed from this
region (it is done in order to continue to see the process (for its graphic to be visible always
within the scroll window).

Note: If the two regions (reglont and reglon2) are defined, region 1 Is normally lesser than
region 2 (the first one Is contained in the second one). It will imply that:

• The background won't shift (the scroll won't be performed) while the camera process'
graphic is Inside region 1.

• If the maximum speed has been defined, then a scroll will be performed to try to restore
the graphic of the camera process to region 1, but without exceeding the imposed speed
l i m i t .

• If the graphic of the camera process tried to exceed from region 2, the imposed speed
limit would be ignored in order not to allow It.

G L O B A L S T R U C T s e t u p

This is a very advanced data structure, which is not at all necessary to create a game, no
matter how difficult It is, as DIV Games Studio's process manager will nomially take charge
of the sound hardware automatically.

All the fields referred to the sound hardware are automatically updated by the program if you
have a sound card, provided that the BLASTER or GRAVIS environment variable is property
i n i t i a l i s e d .

This one record structure contains a series of fields divided Into two groups: the first one, to
activate new parameters of the sound hardware installed in the computer, and the second
one to adjust the different volume controls managed by the sound system's mixer.

The reset.soundO function must be called to activate the new parameters of the sound
hardware Inserted in this structure (in the card, port, irq, dma and dma2 fields).

The set_volume() function must tje called to activate the new volume levels inserted in the
structure (in the master, sound_fx and cd_audlo fields).

This structure is normally used inside the sound system setup programs.

Note; To access these fields, the field name must be preceded by the word setup and by
the symbol. (period). For instance, setup.master must be used to access the master field
(which indicates the mixer's general volume level).

card - Indicates the type of sound card installed in the computer. The program accepts
cards of the Sound Blaster (tm) and Gravis Ultra Sound (tm) families, as well as all those
100% compatible with them.

The values that this field can take are the following ones, depending on the sound card type:

Without card or sound = 0
Sound Blaster 1.5 = 1
Sound Blaster 2.0 = 2
Sound Blaster Pro = 3
Sound Blaster 16 = 4
Sound Blaster AWE = 5
Gravis Ultra Sound = 6
Gravis Ultra Sound MAX = 7

port - Indicates the computer's communications port in which the data of the sound card
m u s t b e w r i t t e n a n d r e a d .

The values that this field can take are the following ones, depending on the port assigned to
t h e s o u n d h a r d w a r e :

0 x 2 1 0 = 0

0 x 2 2 0 = 1
0 x 2 3 0 = 2

0 x 2 4 0 = 3
0 x 2 5 0 = 4

0 x 2 6 0 = 5

Irg - This field indicates the number of IRQ (Interrupt request) assigned to the active sound
c a r d .

The values that this field can take are the following ones, depending on the IRQ used by the
c a r d :

IRQ 2 = 0
IRQ 3 = 1
IRQ 5 = 2

IRQ 7 = 3

IRQ 10 = 4
IRQ 11 = 5

IRQ 12 = 6

Page 226

IRQ 13 = 7

IRQ 14 = 8
IRQ 15 = 9

^ma - The direct memory access (DMA) channel's number used by the sound card must beindicated In this field. This field can take values from 0 to 10, directly depending on the
channel's number.

dma2 - Some sound cards have a second direct memory access channel faster than the
previous one, of 16 bits, commonly named HDMA, DMA2 or DMA16. Like In the previous
field of this structure, this second channel can take values from Oto 10 depending on the 16
bit channel's number used by the card.

faster - This field contains the output general or master volume of the card. A number
ranging from 0 (minimum volume) and 15 (maximum volume) must be here indicated. By
default, the value equals 15, the maximum volume. Turning the master volume down will
affect the sound effects' volume as well as the CD audio music reproduction's volume.

sound fx - This field controls the volume to which the sound effects executed with the
soundQ functions are reproduced.

This volume is Independent from that used with the sound functions. The former is general
for all the sound effects. On the contrary, the latter (volume indicated in the functions) is
specific for every sound.

The values of this field also range from 0 (minimum volume) and 15 (maximum volume). By
default, the value will be equal to the maximum volume.

cd audio - This field controls the volume of the music that will be reproduced from the
audio tracks of a CD ROM or Compact Disc.

Similar to the two previous fields, the values of this field can also rage from 0 (minimum
volume) and 15 (maximum volume). By default, the value will be equal to the maximum
v o l u m e .

C2 - Pradlflnsd GLOBAL Table*

G L O B A L t l m e r l l

This is a 10 position global table, irom Umer[01 to llmerig], and each o1 these 10 positions
is a counter o(second hundredths thai is automatically incremented.

At the beginning ol the program, ihoso 10 couniors will be put at zero They are used to
time within a program. For that purpose, thoy can bo put at zero at any time.

There are 10 counters so lhat the user can dedicate each ol them to perform a dilferant
action inside the game, no matter which ones of the 10 couniers are used. Normally, i1 the
program only needs one counter (most of the times), that numbered 0 (llmer[0)) is used, as
the language allows us to omit the zero in square brackets in this case. That is to say. if only
one counter is needed, rt is possible to use timer simply.

For instance, to implement a process that 5 seconds alter the beginning ot Its execution (it it
had been called) performed a specific action, it would be constructed In a way similar to the
lotlowing one (by using, for instance, the counter timer(9)):

Note 1: As timing is performed in hundredths of a second, these couniers can be
incremented in 1. 2, 3. 4, etc, in every frame of the game That is to say. the user can not
wait for timer(9) to equal 500 exactly, as a frame could indicate 497 hundredths passed
(since it was put at zero with llmer(9]=0;) and the following frame 502 hundredlhs, without
having passed through value 500.

Note 2: If is also important to note lhat much care must be taken to prevent several
processes ot the program Irom usrng the same counter for dilfereni purposes.
If. for Instance, a process.exampleO was created, in every frame of the game these
processes would never manage to execute the acllcn of the five seconds, as each ot them
would put the counter llmer[9] at 0 at the beginning ol their execution, thus invalidating the
liming of the previous processes.

Bearing in mind lhat the counter timor[9| is GLOBAL, lhat is to say. it is the same for all the
game's processes, if a process puts it at 0, it will be put at 0 for the rest of the processes.
Note 3: Finally, much care musi be laken regarding the conditions similar to IF
(tlm9r(9)>=500)..., as these conditions won't only be activated once every 5 seconds, but
they will be activated always alter the first 5 soconds

Page 22S

C3 - PredmiMd GLOBAL Variables

G L O B A L a s e l l

This global variable always indlcatas the ASCII code of the last pressed key In the last
game's frame.

The ascll variable will be at 0 if no key has been pressed In the previous frame of the game.

The ASCII codes are a list of characters (letters, numbers and symbols) numbered from 0 to
255 that have been standardised. The codes less than 32 are called control charaolers;
from 32 to 127 appears the international set of characters; and from number 128. appears
the extended set ol characters (according to the PC standard).

Therefore, an ASCII code Is referred to the character «iat has been created with the last
keystroke (or keystroke combinatKpns. in those cases such as letters bearing a stress
mark).

Important: There is another predefined glottal variable, called scar»_code. which also
contains the code of the last pressed key. But. unlike ascil. this new variable stores the
scan code of the key. That is to say. II Indicates which key has been pressed and not
which character has been generated by It (like ascil).

There are some constants designating these keys codes (keyboard scan codes). The key()
function of the language is normally used in order to verify whether a key is being pressed
or not. This function receives one of these keys codes as a parameter, and returns 0 It the
key Is not pressed or 1 If it Is pressed.

G L O B A L d u m p t y p e

This global variable indicates the frame dump on screen types that must be performed in
every frame ol the game.

The term dump means that the game s frames are sent to We monitor (to the video memory
ol the graphic card).

There are two applicable types ol dump which directly correspond with two constants that
can be assigned to the dump_type variable.

partiaLdump • When indicated with the following statement, partial dumps will be
performed:

dump_typespartlal_dump;

Only the graphics thai are updated, that have changed wiW respect to the previous frame,
will be flumped on screen in this mode. It is advisable to activate this dump In order to gain
speed when a game (or one section of it) Is programmed without a scroll or mode 7 window

Page 229

occupying the entire screen. That is to say, either when the game shows graphics'
movements against a fixed background or when the active scroll or mode 7 windows are
s m a l l e r t h a n t h e s c r e e n .

complele_dump - When indicated with the following statement, complete dumps will be
performed:

dump_type=complete_dump;

In this mode, the entire screen will be dumped no matter whettier the graphics have
changed or not. This mode is slower than the partial dump. Nevertheless, it must be used
when the game has a scroll or mode 7 window occupying all the screen.

By default, the value of dump_type is complete_dump. Thaf is to say, if no other value is
indicated in this variable, complete dumps on the screen will be performed after each
game's frame (which is normally slower than pertorming partial dump).
The dump type can be changed during a program's execution as often as necessary,
according to the requirements of the stages (or sections) under execution at each moment.

Note: There is another glottal variable also related to DIV Games Studio's management on
screen. This is called restorc_type and it defines the type of restoring that must be
performed on screen after every game's frame (which graphics or texts must be deleted).

G L O B A L f a d i n g

This global variable indicates if a screen fading (a gradual change of the game's palette
colours) is being performed at a specific moment. Its value will be:

false (0) - If a fading Isn't being performed.

true (1) - If a fading is being performed.

The purpose of this variable is to be able to determine the end of a screen fading started
with the fade() or fade_on() functions.

On using these functions, a fading of the palette's colours will start, gradually coming closer
to the definitive colours in the next frames of the game. That is to say, in every FRAME
statement a part of the fading will be performed.

When a fade is started, the fading variable will automatically become equal to true (1) and
when it is finished, it will recover its original value, false (0).

Note f: Generally, this variable is used to control the fade() function, and verify whether the
fading has already been executed (performed). For instance, to stop the program's
execution until the fading is finished, which can be done with a statement as follows (just
after the call to the fade() function):

WHILE (fading)
F R A M E ;

E N D

Literally this statement defines: "wfille ttie fading continues to be performed, a new
frame must be displayed".

Note 2: All the programs perform a fade (fade.onQ) at the beginning of fheir execution
(automatically). Therefore, this variable will be put at true (1) at the beginning of all the
programs until this initial fading doesn't finish (while the screen "fading on" is being
performed).

GLOBAL lov fi l te r

This global variable Is used to define the filter applied to the read joystick's coordinates.

It is defined as a percentage from 0 % to 99 %. By default, joy.fllter will equal 10 (a 10%
filter vnll be applied).

The purpose of applying this filter to the joystick's coordinates Is to make its movements
gentler and to avoid possible "Irregularities" In the coordinates' reading. Those joystick's
coordinates must be obtained with the getJoy_posltlon() function. The]oy_fllter variable
will only be useful when the latter function is being used.

The bigger the filter applied to the joystick Is, the gentler the movements of the latter will be.
But, at the same time, its answer will take longer.

Note: It can be noticed how. for small values of joy_fllter. many "Irregularities" appear In
the reading, and for very big values (like 95%) the coordinates' reading Is much gentler and
regular, but slightly slower.

It Is essential to have a joystick (or gamepad) connected to the computer for this variable to
be useful. If the joystick is connected during the program's execution, the system won't
detect it (It must be connected from the beginning).

G L O B A L l o v s t a t u s

The state of the joystick (or gamepad) connected to the computer Is indicated in this global
variable. These are the values that this variable takes by default:

0 - If the joystick reading system is disabled. This value means that a
joystick connected to the computer either has not been found at the
beginning of the program's execution, or has been disconnected.

1 - If the joystick reading system is active. This Is the Initial value by
default, but If the joystick Is disconnected (or there is no joystick

connected), the reading system will be disabled (indicating 0 In the
joy_status variable).

tf the system Is disabled, It can be reactivated by simply assigning 1 to]oy_status (with the
]oy_status=1; statement). But If, after a limited time, no joystlclr Is detected, the system will
be disabled again.

There Is a special mode In which the joystick reading system won't be ever disabled. This
mode Is simply defined by assigning 2 to |oy_status.

joy_status=2; II Activates special mode

Nevertheless, much care must be taken as. If the joystick reading system Is activated In this
way, and there Is no joystick connected to the computer, the game's execution may be
s i o w e d d o w n .

Note: To read the joystick in the programs, the global joy structure is normally accessed.
This structure always indicates Its offset and the state of Its buttons (whether they are
pressed or not).

GLOBAL max p rocess^ t ime

Programs are provided with an anti-btocking system that will make the manager of
processes of DIV Games Studio Interrupts Its execution when a process exceeds the
maximum execution time in a game's frame.

This maximum time Is Indicated In the max_process_time global variable In hundredths of
second. By default. Its value Is 500 hundredths (5 seconds).

That Is to say, when a process takes longer than the Indicated time In executing a FRAME
statement (which Indicates that the process Is ready for the following frame of the game), an
execution error will arise,

Note: The utility of the possibility of changing this variable, assigning a new value to It, Is to
avoid this error In the programs in which there Is a process that must be doing calculations
for a long time.

The following statement must be used to order the process' manager, for Instance, not to
Interrupt a process, unless its execution In a frame Is longer that 30 seconds:

max_process_time=3000:

As 30 seconds are 3000 second hundredths.

Note: Keep In mind that the time used by every computer to do the program's calculations Is
different. Therefore, this value must be defined with a certain margin. In order to avoid to
exceed the maximum execution time when the game Is executed In slower computers.

Page 232

G L O B A L r e s t o r e

This global variable Indicates the restoring type that must be performed after each frame on

The term background restoring means to recover the screen zones In which graphics
have been painted or texts have been written in the previous frame. That Is to say,
'unpaint" the graphics and "unwrite" the texts (delete them).

There are three applicable restoring types which directly correspond to three constants that
can be assigned to the restore_type variable.

no.restore - The fastest one, the background is not restored (-1)
partlaLrestore - Average, partial restoring (0)
complete_restore - The slowest one, complete restoring (1)

By default, the value of restore_type equals complete_restore. That Is to say, if a different
value is not Indicated In this variable, a complete screen restoring will take place after each
frame of the game.

This restoring mode (complete) is the slowest one out of these three modes. Thus, It will
surely t)e possible to gain speed in the game's execution (for It to be faster In slow
computers), if a different value Is assigned to this variable. For instance, the following
statement must be used to Indicate a partial restoring:

res tore_ typo=par t la l_ res tore ;

This statements orders the process' manager of DIV Games Studio to partially restore the
screen background (only those screen zones where graphics or texts have been put) after
the foltowing frames of the game.

The no_restore type (not restoring the screen background) Is the fastest mode. However, It
Is only applicable when the game develops Inside a scroll or mode 7 window occupying the
entire screen. Otherwise, the graphics will leave signs (of the previous frames) on moving
through the screen.

The restoring mode can be changed under a program's execution as often as necessary,
according to the requirements of the stages (or sections) under execution at each moment.

Note: There Is another global variable also related to DIV Games Studio's management on
screen. This Is called dump_type and It defines the type of frames dump that must be
performed (what Information must be sent to the monitor after every frame of the game).

G L O B A L s c a n c o d e

This global variable always Indicates the scan code of the last pressed key In the last
frame of the game.

Page 233

The scan_code variable will be at 0 if no key has been pressed in the previous frame of the
g a m e .

This variable is often used to wait in a program for the user to press any key with a
statement similar to the following one:

WHILE (scan_code == 0)
FRAME;

E N D

This statement indicates that, while no key has been pressed in the previous frame (while
scan_code equals 0), the frames of the game must continue to be displayed.

The scan codes are simply a numeric list of the PC's keys. These codes can slightly vary
(in any key) regarding different keyboards, as there are keyboards of different languages,
with a varied number of keys (101,102..), etc.

However, almost all the codes of the main keys remain constant. There is a predefined list
of constants (synonymous for these codes) in the language that can be seen by accessing
the help about keys codes (or keyboard scan codes). These numeric values will precisely
be assigned to the scan_code variable when the respective keys are pressed in the
p r o g r a m .

Important: There is another predefined globaf variable, called ascll, which also contains the
code of the last pressed key. But. unlike scan_code, this new variable stores the ASCII
code (character) generated by the key. That is to say. it indicates which character has
been generated by the last pressed key and not which key has t>een pressed (like
scan_code) .

The keyO function of the language is normally used in order to verify whether a key is being
pressed or not. This function receives one of these keys codes as a parameter, and returns
0 if the key is not pressed or 1 if it is pressed.

G L O B A L s h i f t s t a t u s

The state of different special keys, such as ALT, CONTROL, etc. is indicated in
predefined global variable.

Each of these keys have the following code assigned:

Right SHIFT key = 1
Left SHIFT key =2
CONTROL keys = 4
ALT and/or ALT GR keys = 8
SCROLL LOCK key = 16
NUM LOCK key = 32
CAPS LOCK key = 64
INSERT key = 128

The shitt_status variable will contain the addition of all the codes of the pressed or
act ivated keys.

For instance, if the ALT key was pressed and the CAPS LOCK was activated, the
shift_status variable's value would equal 72 (8+64).

In order to verify whether a key like ALT Is pressed, it is not possible to check that
shlft.status is equal to 8, as It would imply that ALT Is the only pressed or activated
special key.

A correct verification would be carried out as follows:
IF (8hlft_status AND 8 == 8)

// The [ALT] key Is pressed ...
E N D

Note: The key() function is normally used to verify whefher a key Is pressed. But it is not
possible to determine with this same function whether keys such as CAPS LOCK are
activated, but only if they are pressed or not.

There are two variables containing the code of the last pressed key; scan_code (scan code
of the last pressed key) and ascll (ascii code of the last pressed key).

G L O B A L t e x t z

The depth plane in which the texts must appear on screen is indicated In this global variable.
That Is to say, it Indicates what must appear above the texts and what below them.

The depth planes can be any integer within the range (minjnt... max_int) and, the greater
the number is, the deeper the text or graphic will be placed.

By default, the processes' graphics have their local z variable at 0 , the texts text_z at -256
and the mouse pointer has mouse.z at -512 by default.

That means that, by default, if these values are not modified, the texts will appear above the
processes' graphics and the mouse pointer above the texts.

If, for instance, the aim was that the texts appeared above the mouse pointer (opposite to
which has been established by default), two things could have been done:

a) To place the pointer's plane lower than the texts' plane (a greater
number), such as, for instance: mouse,z=-200; (as -200 is a number
bigger than -256).
b) To place the texts' plane upper that the polriter's plane such as, for
instance, text_z=-600; as -600 is a number lesser than -512 and, thus, a
lesser depth plane (less deep).

Note 1: The text_z variable is GLOBAL for all the texts. That Is to say. It is not possible to
define texts in different depth planes.
Note 2: The texts can only be displayed with the wrlte() (alphanumeric texts) function or
with the wrIteJntO (variables' numeric values) function.

Page 235

C4 - P rwSfinMl LOCAL S tn j c t sm

L O C A L S T B U C T r — f v a d

In this structure, different variatHes el internal use (used by the manager of processes of
DIV Games Studio) are stored.

They are local variables reserved for the system. It is not necessary to know these
variables, as most of them are rvjl useful to create programs.

Important: The modification ol the values of these variables will probably provoke the
blocking ol the computer, an incorrect working ol the manager of processes or problems
on using many ol ihe iniernal [unctions. Tfterefoie. no responsibility Is assumed for ihe
hypotneiical problems derived from an incorrect use ol the reserved structure.

process Id - Ideniifying code of the process. This value is normally obtained with the
rese rved wo rd ID and t he va lue o l i h i s fie ld mus t no t be mod i fied .

Id scan - It Is internally used on detecting collisions in order to save the Identifying code of
Ihe lasi process that has collided with the current process.

process type • Type ol the current process, normally obtained with the operator TYPE,
later rndicaiing the process name.

type scan • It is iniernaliy used to delect collisions or obtain identifying codes of processes
ol a specific type.

status - Present state ol the process. The values that Ihis field can adopt are the followng
o n e s :

0 • Non-existent process.
1 • Process that has received a signal (s^kill).
2 ■ Alive or awake process (s_wakeup).
3 - Asleep process (s.sieep).
4 • Frozen process (S.freeze).

param offset - Offset of the computer's memory in which the parameters received by the
process are located.

prooram Index • Program's counter. Offset Of the computer's memory in which the fust
statement that must execute the process in the next frame is focateO.

Page 236

is_executed - It indicates whether this process has already been executed in the current
f r a m e .

Is painted - It indicates whether the graphic of the process has already been painted in the
current frame of the game.

distance 1 - Vertical distance of the process (reserved for processes displayed in a mode 7
window).

distance 2 - Horizontal distance of the process (reserved for processes dispiayed in a
mode 7 window).

frame percent • Percentage of the following frame completed by the process. This value
will be useful when the FRAME statement is used indicating a percentage. Otherwise, it will
simply be equal to 0 (0%) when the process has not been executed and 100 (100%) when it
has already been executed.

box xO. box vO - Upper left coordinate of the graphic in the previous frame of the game
(where the graphic was placed at screen coordinates).

box x1. box v1 - Lower right coordinate of the graphic in the previous frame of the game.

Page 237

C S - P r e d i l i n e d L O C A L V a r i a b l e s

L O C A L a n g l e

This is a predelmed LOCAL variable, which means thai each process will have ils own value
in lis angle variable.

The angle local variable defines d>e angle in which the graphic of the process must be
seen, indicaiing an angle with regard to the original graphic in degree thousandths.

By default, the value of this variable will be equal to 0 (0 degrees) lor all the processes, but
when the graphic is modified, it will rotate to adjust to the new angle.

The angle may be delined as any integer within the range (min.lnl... max .lnl)

Some examples of the angles thai define certain values in the angle local variable are now
shown (keep in mind that the angles are expressed in degree ihousandtlts):

•180000 - Angle to the left
-90000 • Angle downwards
-45000 • Angle of the diagonal dowiVhghi
0 • Angle to the r ighl
+45000 • Angle of the diagonal nghbup
*90000 • Angle upwards
*160000 • Angle 10 the left
*270000 • Angle downwards

Imponani; When the aim is to rotate the graphic of a process. It Is advisable to paint II
orientated to the right, as it will be displayed like this by default (wiih the angle local
variable equal to 0).

Thus, when another angle is specified, the graphic will appear exactly orioniatod towards it.

For instance, a graphic that has been drawn to the right can be seen orientated upwards (to
tho angle of 90 degrees) by indicating the lollowing statement:

angle=90000: // 90 degree thousandths (90 degrees).

That IS to say, it a graphic was painted orientated towards another angle, (for instance,
downwards), it would Pecome onentaled downwards by default. In the angle 0. which can
provoke confusions when if comes to orientating the graphic towards another angle.

Note: To make ihe graphic of a process advance its coordinates x. y towards its angle (ihe
one spccilied angle in the local variable of the process) a specific distance, the advanceO
f u n c t i o n c a n b e u s e d .

The graphc of a pnxess must be indicated assigrmg a graphic cotte to the graph local vanatjte.

Page 238

L O C A L b i g b r o

This is a predefined LOCAL variable, which means that each process will have its own value
in its bigbro variable.

This variable always contains the Identifying code of the process created by the father jusi
before creating the current process after it. That is to say, when the process that called the
current one had created another one before, this variable will indicate which one is it.

Inside the language, elder brother is the name given to this process. For further
information, see the hierarchies of processes In the language.

This variable will be equal to 0 if the father process (the one that called the current one) has
not created any other process before. II it has created one, or more than one, bigbro will
indicate the identifying code of the last one.

Note: The Identifying code of the younger brother is indicated in the predefined smallbro
l o c a l v a r i a b l e .

L O C A L c n u m l j c r

This is a predefined LOCAL variable, which means that each process will have its own value
i n i t s c n u m t i c r v a r i a b l e .

The local cnumber variable is exclusively used when, in a game, several scroll windows
or several mode 7 windows simultaneously appear on screen.

• For further information about the scroll windows, see the help about the start_scroll()
function, which is used to activate them in the program.

• F o r f u r t h e r i n f o r m a t i o n a b o u t t h e m o d e 7 w i n d o w s , s e e t h e h e l p a b o u t t h e

start_mode7() function, which is used to activate them in the program.

The cnumber utility lies on indicating In which of these windows the graphic of the
process must be seen. Obviously, this variable must be defined only In processes visible
i n s i d e t h e s c r o l l w i n d o w s o r t h e m o d e 7 w i n d o w s . T h i s v a r i a b l e i s u s e l e s s f o r t h e r e s t o f
the processes (screen processes or processes with no graphics).

If the process must be seen in all the windows, then it won't be necessary to modify this
variable, as the value of cnumber (0) by default precisely Indicates so.

Up to 10 windows of both types may be activated, numbered from 0 to 9. There are ten
predefined constants used to define the value of cnumber. These are c_0, c_1, c_2,
c_9 and directly correspond with the 10 possible windows of these types.

cnumber must be assigned the addition of the constants corresponding with the
windows in which the process must be visible.

For instance, if there are 4 scroti windows numbered 0, 1, 2 and 3 in a program, and the
aim is to define that a specific process must be only visible in windows 0 and 2, the following
s t a t e m e n t m u s t b e u s e d :

cnuml>er=c_0+c_2:

The value of cnumtier can be changed during the process execution if necessary.

Note: Keep in mind that for the graphic of the process to be seen in all the windows, it is not
necessary to do anything, as it is the option by default.

LOCAL ctvpe

This is a predefined LOCAL variable, which means that each process will have its own value
in its ctype variable.

The system of coordinates used by the process is indicated in this variable. That is to say.
it shows how the process' coordinates (contained in the x and y local variables) must be
interpreted.

It is possible to use three different systems of coordinates, directly corresponding with three
constants that can be assigned to the ctype variable.

c_screen - Screen coordinates
c_scroll - Scroll coordinates
c_m7 - Mode 7 coordinates

By default, the ctype value is c_screen. used for the process' graphic coordinates to be
interpreted as referred to the screen, where the upper left comer is (0. 0).

With the following statement. c_scroll will be assigned to ctype:

c t y p e = c _ s c r o l l ;

For the process' graphic coordinates to be interpreted as referred to a scroll window, with
coordinates located above the foreground's graphic.

With the following statement. c_m7 will be assigned to ctype:

c t y p e = c _ m 7 ;

For the process graphic coordinates to be interpreted as referred to a mode 7 window, with
coordinates located above the main graphic, three-dimensionally folded in that window.

Note: There is another local variable that also affects the way in which the process
coord inates must t)e in terpreted. This var iab le is resolut ion, which establ ishes the
resolution (scale) in which the coordinates are defined.

L O C A L f a t h e r

This is a predefined LOCAL variable, which means that each process will have its own value
in i t s f a the r va r i ab le .

This variable always contains the identifying code of the process that created (called) the
current process (the one that has this variable). That is to say. it indicates which process
ca l l ed i t .

Inside the language, father process is the name given to the process that calls another one.
The process that has been called receives the name of son prooess. For further
Information, see the hierarchies of processes in the language.

The DIV's manager of processes is the process named dlv_maln. Its function is to create
the main process of the program (PROGRAM) at the beginning of the game's execution.
Therefore, It will be the father of the main program, as well as the father of all the
processes that become orphaned (processes whose father has been killed or finished
before them).

Note: The Identifying code of the son process is indicated in the predefined son local
v a r i a b l e .

L O C A L fi l e

This is a predefined LOCAL variable, which means that every process will have its own
va lue In i t s fi le va r iab le .

In the case that several graphics' files FPG have been loaded in a program, the file local
variable indicates which file contains the graphic that the process is using.

The graphic of a process must be indicated by assigning a graphic's code to the graph
l o c a l v a r i a b l e .

If just one file has been loaded in the program, it won't be necessary to assign any value to
file, as the code of the first loaded file will equal 0 and this is the value of the variable by
d e f a u l t .

If the graphic has been loaded with the load_map() function, it won't be necessary to assign
any value to file either, as the graphics loaded with this function are used as if they
belonged to file number 0 (to the first one that is loaded in the program).

When more than a file is loaded, it is necessary to indicate in each process in which one its
graphic is stored. It is done by assigning the file code returned by the load_fpg() function
(on loading this file FPG) to the file local variable.

Note: Normally, if several files are sequentially loaded in a program, the first one will have
code 0, the second, code 1, the third, code 2 and so on.

Page 241

In general, if several files are used. It Is a good practice to ftave the same number of global
variables (named, for instance, fllel. flle2. ...) containing the code of each of the files, to
use them in the processes when it comes to defining its file variable (the file FPG that must
be used).

The variables would be defined inside the section GLOBAL in the following way:

G L O B A L

flle l ; / /F i rs t fi le 's code
flle2: // Second file's code

Next, these variables would be assigned the file codes on loading them with the load_fpg()
function in the following way (supposing that the names of the files Is namel.fpg.
name2.fpg, etc.):

flle1=load_fpg("name1.fpg"): // Files loading
fi le2= load_ fpg ("name2 . fpg ") ;

These files are generally loaded at the beginning of the program. Later, the used file would
only have to be defined inside each process with the following statement (supposing that the
process uses graphics stored in the file namel.fpg):

fi l e = fi l e 1 / / T h e fi r s t fi l e i s u s e d

Note: Keep in mind that defining the file local variable is futile, unless a graphic's code is
assigned to the graph local variable.

L O C A L fl a g s

This is a predefined LOCAL variable, which means that every process will have its own
value in Its flags variable.

The flags local variable indicates the mirrors and transparencies of the displayed graphic in
the processes. The possible values are the following ones:

0-Normal graphic.
1 - H o r i z o n t a l m i r r o r . -

2 - Ve r t i c a l m i r r o r .

3-Horizontal and vertical mirror (180°).
4-T ransparent graphic.
5-Transparent and horizontal mirror.
6-Transparent and vertical mirror.
7-Transparent. horizontal and vertical mirror.

By default, the value of the flags variable is 0. That is to say. if it is not modified, the graphic
will be displayed opaque (not transparent or mirror).

Page 242

The terms mirror and transparency are now defined:

• Horizontal mirror, the graphic will be horizonlally flipped. That is to say, if it was facing

ieft. It will face now right and vice versa.

• Vertical mirror, the graphic wiii be verticaiiy flipped. That is to say. If it was facing up, it
w i i i f ace now down and v i ce ve rsa .

• Transparency (or ghost-layering), the graphic wlil be dispiayed semitransparent. That
is to say. It wlil be possible to see what Is placed behind the graphic, as If It was a
coloured window, unlike the opaque graphics normally displayed.

For instance, the following statement must be used to display a transparent graphic of a
p r o c e s s :

fl a g s = 4 ;

Note: The graphic of a process must be Indicated assigning a graphic code to the graph
l o c a l v a r i a b l e .

L O C A L g r a p h

This is a predefined LOCAL variable, which means that each process will have its own value
in its graph variable.

Normally, most of the processes correspond with a graphic object displayed on screen that
wiii be placed at the Indicated coordinates In the x and y local variables. It Is necessary to
define which graphic corresponds with this process by assigning a graphic code to the
graph local variable.

By default, this variable will be equal to 0. which implies that no graphic wiii be dispiayed for
this process.

The graphics must first be created in the graphic editor of DiV Games Studio (with the
option "New..." of the maps menu) and then, they can be saved in an archive MAP
(containing this graphic), or in a file FPG together with other graphics (it is possible to
create a new file with the option "New..." of the files menu).

That is to say, the graphics used in a program may come from an archive MAP (that
contain Just one graphic) or from a file FPG (that may contain many graphics).

The same graphic may be used In a program by many processes at the same time.

A r c h i v e s M A P

in order to use a graphic from an archive MAP in the program, it must be loaded by calling
the ioad_map() function, which will return the graphic code that must be assigned to the
graph variable.

Page 243

Th« graphic codes returned by this function are simply integers from 1000.

A GLOBAL variable is normally used to save this graphic code and ttien, it is assigned to
the graph variable.

F i l e s F P G

In order to include a graphic that has been done In the graphic editor in a file FPG, it Is
necessary to drag the graphic window to the file window (click on the graphic, move to
the file and release). Then, the program will ask for the graphic code, so an integer ranging
from 1 and 999 mus t t3e inc luded here .

Thus, to use the graphic in a program, the file FPG that contains it must first be loaded with
the loadJpgO function, assigning then the graphic code to the graph variable.

it won't be necessary if only one file is loaded, as the file variable equals 0 by default in ail
the processes and 0 will always be the first file's code loaded in the program.

Note: There are more local variables related to the graphic of a process. The most
Important ones are mentioned below:

Graph - Graphic code.
F i le - F i l e code .

X, Y - Graphic coordinates.
Z - Depth plane.
Angle - Graphic angle.
Size - Graphic size.
Flags • Mirrors and transparencies.
Region - Display window.

L O C A L h e i g h t

This is a predefined LOCAL variable, which means that each process wiii have its own value
in its height variable.

The local height variable is exclusively used in the processes that belong to mode 7
windows. That is to say, processes that have their coordinates' system inside a three-
dimensional window (its local variable ctype=c_m7).

it is used to define the height at which the graphics of the processes must be placed above
the three-dimensional plane. The local z variable is not used for this purpose, as It is used
to define the depth plane of the graphics (even if it is now useful only for processes placed
at the same coordinates).

The height of the process can be defined as any integer within the (minjnt ... maxjnt)
range, even if positive numbers are normally used, as the height of the bottom is 0 and
processes are placed above It. "

By default, the value of the height variable is 0 for all the processes, which means that if
another value Is not specified, the graphics of fhe processes will appear just above the
bottom of the mode 7 (above the plane three-dimensionaliy folded).

The graphic's base will first be placed In the indicated height of the process, unless
control point number 0 is defined. In this case, this point will be placed In that height.

Note: For further Information about the mode 7 windows and how to place graphics Inside
these windows, see the help about the start_mode7() function, which is used to activate
them In the program.

This variable can tje used for any other purpose In the non mode 7 processes, as the
system will completely Ignore It.

L O C A L p r i o r i t y

This is a predefined LOCAL variable, which means that each process will have Its own value
in Its priority variable.

In the preparation of each frame, all the processes will be executed In the priority order
established by the priority local variable.

The higher the value of priority In a process Is. the sooner It will be processed In each
frame. The priority value may be established as any integer within the (min_lnt... maxjnt)
range. For Instance, to establish the priority level of a process at 10. the following statement
m u s t b e u s e d :

p r lo r l t y=10 ;

All the processes active In the program having the same level of priority will be executed
in a undetermined order that, moreover, may vary from some executions of the game to
o t h e r s .

By default, the priority local variable will be Initialised at 0 In all the processes created in the
program. Thus. It will be possible to execute them In any order, if the value of this variable Is
n o t d e fi n e d .

If the priority of a single process Is fixed at a positive number, such as 1. It will be executed
before the rest of the of the processes. On the other hand. If It is fixed af a negafive number,
such as -1. then It will be executed after the rest (supposing that the priority variable of the
rest has not been modified, so Its value Is still equal to 0).

W h e n t h e p r o c e s s e s p r i o r i t y m u s t b e e s t a b l i s h e d ?
When a process needs to use data of another process for its calculations. It Is normally
advisable to execute It after the latter, defining Its lowest priority for the data of the second
process to be updated when they are read.

Page 245

For instance, if process B must place its graphic 8 pixels lower than the graphic of process
A, the priority of A must be greater than that of B, for the latter to be executed first.

Thus, when process B obtains its y coordinate by adding B to the one of process A, this
calculation is done with the y coordinate of process A already updated for the following
frame (to ensure that in each frame, the y coordinate of process A first, and then that of
process B will be established).

For that purpose, suffice would be to define either the priority of A as 1 or the priority of B as
-1, since by default both priorities are at 0.

Note: The priority level of the process has nothing to do with the depth plane in which its
graphic appears on screen, as this plane is indicated In the local z variable. That is to say,
the fact that a process is processed before does not mean that the graphic is painted
b e f o r e .

L O C A L r e g i o n

This is a predefined LOCAL variable, which means that each process will have it own value
in its region variable.

The region local variable defines the zone of the screen in which the graphic of the process
must be visible, indicating the number of region.

A region is a rectangular zone of the screen, such as a window, associated to a number.

By default, this variable will be equal to 0 in all the processes, making reference to region
n u m b e r 0 t h a t i s t h e e n t i r e s c r e e n .

That is to say. by default the graphics of the process will be visible in the whole screen (at
any point of the screen in which they are placed).

At the beginning, only region number 0 is defined. To define new screen regions, it is
necessary to use the define_reglon() function.

For instance, for the graphic of a process to be visible only inside a 100 by 100 pixel box
placed in the upper left comer of the screen (at the coordinates 0, 0), first the new region
should be defined in the following way, supposing that region number 1 is defined:

def ine_reglon(1,0,0,100,100);

and then, the number of region (1) should be assigned to the region local variable of the
process with the following statement:

reg ion=1;

The regions may be redefined at any moment inside a program. That is to say, they can
change their position or size if necessary.

Page 246

Note: The graphic of a process must be indicated assigning a graphic code to the graph
l o c a l v a r i a b l e .

L O C A L r e s o l u t i o n

This is a predefined LOCAL variable, which means that each process wiii have its own value
i n i t s r e s o l u t i o n v a r i a b l e .

Normally, the coordinates of a process (indicated in the x and y local variables) are defined
in screen pixels.

The resolution local variable must be used when the aim is to define the coordinates in
units smaller than the pixel.

That is to say, this variable indicates the precision of the process" coordinates.

By default, the variable will equal 0 and the coordinates will be specified in pixels.

The greater the value of resolution is, the smaller (and more accurate) the unit in which the
coordinates are interpreted will be. Some examples are show below:

reso lu t ion=1 ; - The coord ina tes a re spec ified in p ixe ls (s im i la r to
resolution=0, which is the value by default).
resolution=10; - They are specified in tenths of pixel.
resolution=100; - They are specified in hundredths of pixels.
resolutlon=2; - They are specified in hail pixel.

For instance, a process located at 160, 100 with resolution equal to 0 (or 1), will be in the
same position as a process located at 1600,1000 and with resolution equal to 10.

The value of resolution is normally defined as a positive Integer multiple of 10 (10. 100,
1000,. . .) .

In short, when the value of resolution is defined, the processes' manager ol DIV Games
Studio will divide the coordinates of the processes between resolution when it comes to
painting their graphics on screen.

Important: fwluch care must be taken when, in a program, there are several processes with
different resolutions of coordinates, as some functions, such as get_dlst() (used to obtain
the distance between two processes), will return Incorrect results when two processes
using different resolution of coordinates are accessed.

It is normally advisable that ail the processes active in the game, at least all that Interact
(that are detected, modified or that can be collide) use the same resolution.

L O C A L s i z e

This is a predefined LOCAL variable, which means that each process will have its own value
in i t s s i ze va r iab le .

The size local variable defines the size in which the graphic of the process must be seen.
This size is a percentage related to its original size.

By default, the value of this variable will be equal to 100 (100%) for all the processes, and
when the graphic is modified, it will scale (reducing or expanding its size) to adjust to the
n e w s i z e .

That is to say, to double the size of the graphic displayed, it will be necessary to specify
200%. The following statement will be used for this purpose:

s lze=200;

Therefore, if this value is lesser than 100. the graphic will be seen smaller; otherwise, it will
be seen bigger.

At first, there is no limit for the graphic size, but if the size local variable is put at 0 (0%).
then the graphic of the process won't be seen.

Note: The graphic of a process must be indicated assigning a graphic code to the graph
l o c a l v a r i a b l e .

This is a predefined LOCAL variable, which means that each process will have its own value
i n i t s s m a l l b r o v a r i a b l e .

This variable always contains the Identifying code of the following process created by the
father of the current process after it. That is to say. when the process that called the current
one calls later another one. this variable will indicate which one is called now.

Inside the language, younger brother is the name given to this process. For further
information, see the hierarchies of processes in the language.

By default, this variable will be equal to 0 until the father process makes a call to another
process. At this moment, the new process (the younger brother of this one) will be created,
indicating its Identifying code in smallbro.

Note: The Identifying code of the elder brother is indicated in the predefined bigbro local
v a r i a b l e .

L O C A L s o n

This is a predelined LOCAL variable, which means that each process wiil have its own
value in its son variable.

This variable always contains the identifying code of the last process created (called) by
the current process. That is to say, it indicates which is the last process called.

Inside the language, father process is the name given to the process that calls another one.
On the other hand, son process is the name given to the process that has been called. For
further information, see the hierarchies of processes in the language.

By default, this variable will be equal to 0 until the process makes a call to another process.
At this moment, the new process will be created indicating its identifying code in son.

Note: The Identifying code of the father process is indicated in the predefined father local
v a r i a b l e .

L O C A L x o r a p h

This is a predefined LOCAL variable, which means that each process will have Its own value
in its xgraph variable.

This is an advanced level variable. Thus, its use requires certain experience.

The xgraph local variable (extended graphic) allows us to use multiple graphics. To
define the graphic of a process as a graphics set among which it is necessary to see the
most appropriate with the angle's process (specified in the angle local variable).

That is to say, if the xgraph variable is defined, the graph local variable which normally
defines the graphic of the process will be ignored and one graphic or another will be used
depending on the angle variable.

Therefore, on changing the process' angle the graphic of the process won't appear
rotated, but it will use this angle to select the process' graphic (inside the defined set).

By default the xgraph variable will equal 0 in ail the processes, which indicates that they are
not going to use multiple graphics.

The utility of the multiple graphics lies on the possibility of creating games in perspective,
where the change of an angle in the process doesn't implied a rotation of its graphic, but the
replacement of the graphic by another one painted in a different perspective (painted with
another angle inside that perspective).

How to use the multiple graphics.

1 - First, the different pictures that are going to represent the process' graphic have to be
painted with different angles in perspective. The latter will be a finite number of graphic's
views, such as 4, 8,12, etc., (or any other integer bigger than 1),

Page 249

Take into account that If 4 views are defined, a different view will be defined every 90
degrees, if 8 views are defined, every 45 degrees, etc.

2 - It is necessary to put these graphics in order according to their angles. First, the graphic
corresponding with angle 0 (towards the right) and then, the rest in a clockwise direction.

3 - A table, generally GLOBAL, must be created and initialised with the following values:

Number of graphic's views,
Graphic's code for angle 0 (first view),
Code of the following angle (second view).

The name given to this table makes no difference. For instance, if a multiple graphic is
defined with 4 views, which must be the graphics with the codes 10, 11, 12, and 13, the
definition of the table could be as follows:

G L O B A L

table_graphic1 []=4,10,11.12,13:

4 - Finally, the offset of this table must be assigned inside the computer's memory to the
xgraph local variable of the process, which is done with the following statement (inside the
process in question):

xgraph=OFFSET tab le_graphic1;

The OFFSET operator is used to obtain the offset of a program s datum in the memory.

Once the multiple graphic has been defined, in each frame of the game the system will
use the graphic corresponding with the angle closest to the process' angle (the one
indicated in its angle variable).

The xgraph variable must be put at 0 again in order to disable the multiple graphic system
in a process.

Important; If any graphic's code is put with a negative sign inside the table that defines the
set of graphics, then this graphic will appear horizontally flipped. That is to say, if the
graphic was facing right, it will appear facing left, and vice versa.

Note: The multiple graphic system is normally used in mode 7 windows, as in the folded
three-dimensional plane the graphics must be seen in a different way, according to the
angle from which they are observed.

For further information about this teohnique, see the start_mode7() function used to
activate a mode 7 window in the program.

Page 250

L O C A L X , L O C A L v

These are predefined local variables, which means that every process will have its own
value in its x and y variables.

These local variables of the processes define where their graphic (defined in the graph local
variable) must be placed.

The X local variable defines the process' horizontal coordinate, which may be defined as
an integer within the range (min_int ... max_int), putting the positive coordinates to the
right and the negative ones, to the left.

The y local variable defines the process' vertical coordinate, which may be defined as an
integer within the range (min_int ... max_int), placing the positive coordinates downwards
and the negative ones, upwards.

By default, these coordinates will be specified in pixels, referred to screen coordinates,
where the upper left comer is the point placed at (0, 0).

T y p e o f c o o r d i n a t e s .

There are several systems of coordinates that may be used by the processes and that are
defined with the ctype local variable. The coordinates related to the screen are the system
by default.

R e s o l u t i o n o f t h e c o o r d i n a t e s .

The resolution local variable indicates the precislcn of the process coordinates. By default,
this variable will be equal to 0 and the (x, y) coordinates will be specified in pixels.

The higher the value of resolution is, the smaller (and more precise) the unit in which the
coordinates are interpreted will be. Some examples are now shown;

resolutions!; - The coordinates are specified in pixels,
resolutions! 0; - They are specified in tens of pixels,
resolutions! 00; - They are specified in hundreds of pixels.
resolution=2: - They are specified In half pixel.

Note: A different type and resolution of coordinates may be either defined for each process
or changed while executing if necessary.

Important: When a graphic is placed at some specific coordinates, it is the graphic center
that will normally be placed at these coordinates.

This can be changed by defining in the graphic editor control point number 0 of the
graphic cf the process (whose graphic code is Indicated in the graph variable).
If the contrcl point has been defined, it will be placed at the specified coordinates.

Page 251

For instance, if control point number 0 Is placed in the upper left corner of the graphic,
and then, the graphic is put at the (100, 100) coordinates, the upper left comer of the
graphic will be placed at these coordinates.

L O C A L z

This is a predefined LOCAL variable, which means that each process will have its own value
in i ts z var iab le .

The z local variable defines the depth plane in which the process graphic must t>e placed on
screen (the graphic is defined in the graph local variable). That is to say, it defines what
must appear above the process' graphic and what under it.

Any integer within the range (min_int ... max_lnt) may be used as a depth plane. The
greater the number is, the deeper the graphic will be placed.

By default, the depth planes are arranged in the follovring way:

(■f) Greater depth

+512 - Scroll windows (see scroll)].z)
+256 - Mode 7 windows (see m7(J.z)
0 - Graphics of the processes (local z)
-256 - Texts (see text_z)
-512 - Mouse pointer (see mouse.z)

(-) Less depth

That is to say, the z local variable that defines the depth plane of the processes' graphics
will be initialised at 0. The processes' graphics will be placed below the mouse pointer and
texts, and atiove the scroll and mode 7 windows (if the values are not modified by default).

All the objects (texts, graphics, windows, ...) placed in the same depth plane will appear on
screen (on being superposed) in an undetermined order, that may vary from some
program's executions to some others.

If the aim was, for instance, that the graphic of a process appeared above all the objects of
the program, a depth plane could be fixed for it above the rest (as -1000), with the following
s t a t e m e n t :

z=-1000;

At the beginning, all the processes have their z variable at 0, then the graphic of the
processes will appear in any order if the plane in which each of them must be placed is not
d e fi n e d .

The depth plane of a process may be modified (by assigning a new value to its z variable)
as often as necessary inside a program.

Page 252

The depth planes of the rest of objects (windows, texts and mouse pointer) may also t)e
modified at any stage of the program.

Note 1: The processes that belong to a scroll window (having its variable ctype=c_scroll)
will be painted in the depth plane of the scroll window. Nevertheless, inside that window,
all the graphics of the processes will appear in order, according to their depth plane.

That is to say, the process' depth plane (indicated as usual in the z variable) will be referred
to the scroll window in which the process appears (see start_scroliO)-

Note 2: The processes that belong to a mode 7 window (having its variable ctype=c_m7)
will appear in that window In order, according to the depth order In the three-
dimensional plane ignoring the value of their z local variable.

The only sense of the z local variable in mode 7 processes Is to define the order in which
the processes exactly placed at the same coordinates of the folded plane must be
superposed. That is to say, if two processes are placed in the three-dimensional plane at
the same coordinates, then it will be possible to define, through the z variable, which one
must appear above the other (see start_mode7()).

Page 253

E - Predlflned CONSTANTS

K e y b o a r d c o d e s

These conslams are noOTally used as a parameter o(the key{) function, to inflicate which
key Is the one iliat the user wishes to kttow whether It is pressed.

it can also be used to compare the scan.code global variable, that contains the code ot the
last key that has been pressed, with these values.

The character _ (undertlning) followed by the name ol the key. Is normally used to designate
each constant. For Instance, lor the A key. tt>e constant referred to its code will be _a.

The whole list ol these constants, with their respective values. Is as follows (according to ihe
standard arrangement of me keyboard).

_ e s c s t (E S C) o r e s c a p e
_ M = 5 9 (F l) o r (u n c t i o n 1
_'2 =60 [Fsj or function 2

= 6 f [F S J o r f u n c i k j n S
_ f 4 = 6 2 (F 4) o r f u n c t i o n 4
_ f 5 = 6 3 [F 5] o r f u n c t i o n 5
. f 6 = 6 4 [F 6] o r f u n c t i o n 6

= 65 {FTI or function 7
. . f 8 = 6 6 | F 6] o r f u n c t i o n 6
_ f 9 = 6 7 [F 9) o r f u n c t i o n 9
. 1 1 0 = 6 6 (F 1 0) o r f u n c t i o n 1 0
. M l = 8 7 (F l 1] o r f u n c t i o n 1 1
J12 =88 (F12)o r lunc l i on 12 (0E8UGGEFI)
_ p m . s c r = 5 5 [P R I N T S C R E E N]
_8CfO l l . l ock =70 ISCROU.LOCK1

_ w a v e = 4 1 (l o r C I k e y
_ 1 = 2 N u m b e r " I * k e y
_ 2 = 3 N u m b e r " 2 " k e y

=4 Number *3" key
_ 4 = 5 N u m b e r ' 4 ' k e y
_ 5 = 6 N u m b e r ' S ' k e y
_ 6 = 7 N u m b e r * 6 " k e y
_ 7 = 8 N u m b e r * 7 " k e y
_ 8 = 9 N u m b e r ' s * k e y
_ 9 = 1 0 N u m b e r ' 9 ' k e y
. . 0 = 1 1 N u m b e r ' 0 ' k e y
_ m l n u s = 1 2 S y m b o l k e y
_ p l u B = 1 3 S y i n l x) ! • + * k e y

.backspace = 14 De le te (< -) key
J a b = 1 5 T a b u i a t o r f T A B) k e y
_ q = 1 6 L e t t e r ' Q ' k e y
_ w = 1 7 L e t t e r " W " k e y
_ e = 1 8 L e t t e r " E " k e y

Page 254

_ n u m J o c k
_c_backs lash
_c as te r i sk

_ c _ u p
_ c _ p g u p
c le t t
_c_center
c r l gh t
_c_end
_c_down
_c_pgdn
c lns
_c_dol
_c_plus

c e n t e r

= 6 9 [N U M L O C K] o r n u m e r i c l o c k
= 53 Symlx>l [/] of tfie numeric keytxiard
= 55 Symbol [*] of ttie numeric keytxiard
= 74 Symtxil [-] of the numeric keyboard
= 71 [HOME] of the numeric keyboard
= 72 Up cursor of the numeric keyboard
= 73 [PGUP] of the numeric keyboard
= 75 Lett cursor of the numeric keyboard
= 76 [5] key of the numeric keyboard
= 77 Right cursor of the numeric keyboard
= 79 [END] of the numeric keyboard
= 80 Down cursor of the numeric keyboard
= 81 [PGDN] of the numeric keyboard
= 82 [INS] of the numeric keyboard
= 83 [DELETE] of the numeric keyboard
= 78 Symbol [+] of the numeric keyboard
= 28 [ENTER] of the numeric keyboard

It is indifferent to use these constants or the numeric values that they represent. That is to
say, it is possible to call the key() function, to verify whether the A key is pressed, such as
key(_a) or key(30) (in the previous list, it is possible to verify that 30 is the numeric value of
the constant a).

These constants are used to indicate the videomode in the set_mode() function.

Each constant indicates the videomode in the following way: first, the letter m and then, the
horizontal and vertical resolution of the mode, separated by an x. The values defined for
these constants are the following ones:

m 3 2 0 x 2 0 0
m 3 2 0 x 2 4 0

m 3 2 0 x 4 0 0

m 3 6 0 x 2 4 0
m 3 6 0 x 3 6 0
m 3 7 6 x 2 8 2

m 6 4 0 x 4 0 0

m 6 4 0 x 4 a 0
mSOOxSOO

m l 0 2 4 x 7 6 8

= 3 2 0 2 0 0

= 3 2 0 2 4 0
= 3 2 0 4 0 0

= 3 6 0 2 4 0
= 3 6 0 3 6 0

= 3 7 6 2 8 2
= 6 4 0 4 0 0

= 6 4 0 4 8 0
= 8 0 0 6 0 0

= 1 0 2 4 7 6 8

N u m b e r s o f w i n d o w ■C o M t a n t » ; c 0 . . . c 9

These constants are used to be assigned to the predefined cnumber local variable that is
used to define the scroll or mode 7 windows in which the graphic of a process must appear.

This will only be necessary when several scroll or mode 7 windows have been
activated, and It ISN'T aimed to display the graphic of the process in all of them.

Up to 10 windows of these types may be defined, numbered from 0 to 9. and that directly
correspond with the constahts c_0, c_1, c_2 ... c_9.

For the graphic of a process to appear only in one of these windows, the corresponding
constant must be assigned to Its cnumber locai variable. For Instance, If the aim was for the
graphic of a process to appear only In (scroll or mode 7) window number 3, the following
s ta temen t wou ld be I nc l uded I n i t s code :

cnumber=c_3 :

If the aim for the graphic of a process is to appear in several of these windows, then the
constants must be added. For instance, for a process to appear in the windows 0, 4, and 5,
the following assignment will be performed:

cnumber=c_0+c_4+c_5 ;

For the graphic to appear in all the windows, suffice will be to assign 0 to the cnumber
variable. It won't be necessary if this variable has not been modified, as it is its value by
d e f a u l t .

The values equivalent to these constants correspond with the following powers of 2:

c_0 = 1 sc ro l l / mode -7 number 0

c_1 - 2 sc ro l l / mode -7 numbe r 1

c 2 = 4 sc ro l l / mode -7 number 2

c _ 3 = 8 scroll / mode-7 number 3

c _ 4 = 16 sc ro l l / mode-7 number 4

c_S = 32 sc ro l l / mode-7 number 5

c _ 6 = 64 sc ro l l / mode-7 number 6

c _ 7 = 128 scroll / mode-7 number 7
c B = 256 scroll / mode-7 number 8
c 9 = 512 sc ro l l / mode -7 number 9

t r u e

This constant is used to indicate true values, to initialise logical variables or to define logical
parameters. That Is to say, It must be evaluated as a condition.

Its value is 1 and, as in the language all the odd numbers are interpreted as true, this
constant will be evaluated as a condition that is always complied (true).

Page 257

This signal transmits the imperative order sleep to the processes. It is used to make a
process dormant. An asleep process vi/ill not appear in the following frames of the game, tiut
it won't be eliminated, as it happens with the signal s_kill. Indeed, this kind of process may
wake up at any moment with a signal s_wakeup.

That is to say, on sending a signal s_sleep to a process, the latter will not appear in the
following frames of the game (until it Is awaken or eliminated).

The constant s_sleep_tree is directly linked to this constant, with the proviso that, on
sending this signal, the former will make dormant the indicated process and Its sons, which
are the processes created by it.

s f r e e z e

This constant is used as a parameter of the slgnal{) function (to send signals to the
processes). Its value is 3.

This signal transmits the imperative order freeze to the processes. It is used to freeze
(immobilise) a process. A frozen process will continue to appear in the following frames of
the game, but it won't be processed, so it will remain immobile. This process can be
reactivated at any moment if a signal s_wakeup is sent to it.

That is to say, on sending a signal s_freeze to a process, the latter will stop processing
(stop interpreting its statements) in the following frames of the game (until it is activated or
eliminated with s_klll).

The constant s_(reeze_tree is directly linked to this constant, with the proviso that, on
sending this signal, the indicated process as well as its sons (which are the processes
created by it) will be frozen.

This constant is used as a parameter of the signal() function (to send signals to the
processes). Its value is 100.

This signal Is used to eliminate a process and all the process created by it, by sending the
imperative order kill to them. This is a version of the signal s_klll, which eliminates a
process, but not the processes that it had created.

That is to say, the signal s_klll_tree will eliminate the process and all its descendants.
Thus, none of them will appear any longer in the following frames of the game.

s w a k e u p t r e e

This constant is used as a parameter of the sIgnalO function (to send signals to the
processes), its vaiue is 101.

This signal is used to wake up a process and all the processes created by it, by sending the
imperative order wakeup to them. This is a version of the signal s_wakeup, which wakes a
process up, but not the processes that it had created.

That is to say, the signal s_wakeup_tree will wake up the process and all its descendants.
Thus, all these processes will return to their normal state in the loilowing frames of the
g a m e .

Processes that have been made dormant with the signal s_sleep_tree or frozen with the
signal s_freeze_tree can be woken up (reactivated).

s s leep t ree

This constant is used as a parameter of the slgnal() function (to send signals to the
processes). Its value is 102.

This signal is used to make a process and ail the processes created by it dormant, by
sending the imperative order sleep to them. This is a version of the signal s_sleep, which
makes a process donnanl, but not the processes that it had created.

That is to say, the signal 8_sleep_tree will make the process and all its descendants
dormant. Thus, all these processes will disappear in the following frames of the game (but
they won't be eliminated).

These asleep processes can be woken up (reactivated) with the signal 8_wakeup_tree.

8 f r e e z e t r e e

This constant is used as a parameter of the slgnalQ function (to send signals to the
processes). Its vaiue is 103.

This signal is used to freeze (immobilise) a process and all the processes created by it, by
sending the imperative order freeze to them. This is a version of the signal 8_freeze, which
freezes a process, but not the processes that It had created.

That is to say, the signal s_freeze_tree will freeze the process and all its descendants.
Thus, all these processes will stop processing in the following frames of the game (they will
remain immobile, as they won't execute their statements).

These frozen processes can be unfrozen (reactivated) with the signal s_wakeup_tree.

Page 260

a l l t e x t

This constant is used as a parameter of the delete_textO function, to delete all the texts
displayed in the program with the wrtteO and wrlte_lntO functions.

That is to say, the following statement must be executed in order to make disappear all the
texts displayed on screen:

delete_text (a l l_ text) ;

The value assigned to this constant is 0,

This constant is used as parameter of the 8top_8oundO function, to stop all the sound
effects previously activated with the sound() function.

That is to say, the following statement must tre executed in order to stop all the sound
channels, active at a specific moment:

8 top_80und (a l l _sound) ;

The value assigned to this constant is -1.

This constant is used as a parameter of the graphlc_info() function, to ask for information
about the width (in pixels) of a specific graphic. Its value is 0.

q h e i g h t

This constant is used as a parameter of the graphlc_infoO function, to ask for information
about the height (in pixels) of a specific graphic. Its value is 1.

This constant Is used as a parameter of the graphlc_lnfoO function, to ask for Information
about the horizontal center of a specific graphic. Its value is 2.

The horizontal center of a graphic will be half the width (in pixels), if control point number
0 (graphic center) has not been defined in the painting tool.

This constant Is used as a parameter of the graphlc_lnfo() function, to ask for information
about the vertical center of a specific graphic. Its value is 3.

The vertical center of a graphic will be half the height (in pixels), if the control point
number 0 (graphic center) has not been defined in the painting tool.

c s c r e e n

This constant is used to be assigned to the predefined ctype local variable used to define
the type of coordinates that a process will have. Its value is 0.

This is the value by default of ctype, used for the coordinates of the graphic of the
process to be interpreted as if they were referred to the screen. The (0,0) coordinate is the
upper left comer.

c s c r o l l

This constant is used to be assigned to the predefined ctype local variable used to define
the type of coordinates that a process will have. Its value is 1.

This is the value assigned to ctype, used for the coordinates of the graphic of the process
to tje interpreted as if they were referred to a scroll window, to coordinates with respect to
the foreground's graphic.

For further infonnation about the scroll windows. It is possible to access the start_scroll()
f u n c t i o n u s e d t o a c t i v a t e t h e m .

c m 7

This constant is used to be assigned to the predefined ctype local variable used to define
the type of coordinates that a process will have. Its value is 2.

This is the value assigned to ctype, used for the coordinates of the graphic of the process
to be interpreted as if they were referred to a mode 7 window, three-dimensionally folded in
t h a t w i n d o w.

For further information about the mode 7 windows, it is possible to access the
start_mode7() function used to activate them.

Page 262

This constant is used to be assigned to the predefined dump_type global variable used
to define the type of dump that will be performed on screen, its value is 0.

The following statement is used:

dump_type=partlal_dump;

This statement indicates to the manager of processes of DIV Games that the following
dumps must be partial.

Dump Is the name given to the system of sending the game's frames to the monitor (to the
video memory of the graphics card).

There are two types of dumps:

Partial: Only the graphics that are updated and that have varied with regard to the previous
frame will be dumped on screen. It is advisable to activate this dump in order to gain speed
when programming a game (or a section of It) without a scroll or mode 7 window occupying
the whole screen. That is to say, either when the game shows graphics movements against
a fixed background or when the active scroll or mode 7 windows are smaller that the screen.

Complete: All the screen will be dumped, irrespective of whether the graphics have
changed or not. This is the dump by default and it is slower that the partial dump.
However, the complete dump must be used when the game has a scroll or mode 7 window
occupying the whole screen.

c o m p l e t e d u m p

This constant Is used to be assigned to the predefined dump_type global variable used to
define the type of dump that will be performed on screen. Its value is 1.

This is the value by default of the dump_type variable. To establish this value, it is
necessary to use the following statement:

dump_type=complete_dump;

This statement indicates to the manager of processes of DIV Games that the following
dumps must be complete.

This constant is used to be assigned to the predefined restore.type global variable used to
define the type of restoration that must be applied to the screen background after each
game frame. Its value is -1.

The expression background restoration deals with the operation of restoring the screen
areas in which graphics have been painted or texts have been written in the previous frame.
That is to say. to delete both the painted graphics and the written texts.

The following statement must be used to establish this value:

res to re_ typo=no_res to re ;

This statement indicates to the manager of processes of DIV Games Studio that, after the
following game's frames it is not necessary to restore the screen background.

If the background is not restored, speed will be gained in the execution of the game (that
will go faster in slow computers). But this mode of restoration (no_restore) can only be
applied In games or in their sections In which there is a scroll or mode 7 window
occupying the whole screen.

p a r t i a l r e s t o r e

This constant is used to be assigned to the predefined restore_type global variable used to
define the type of restoration that must be applied to the screen background after each
game frame. Its value is 0.

The following statement must be used to establish this value:

res to re_ type=par t ia l_ res to re :

This statement indicates to the manager of processes of DIV Games Studio that, after the
following game's frames only the screen areas in which graphics have been painted or
texts have fieen written must be restored.

This mode of restoration (partlai_restore) is faster than a complete restoration (option by
default), but it must only be applied in games, or In their sections, in which there ISN'T a
scroll or mode 7 window occupying the whole screen.

This constant is used to be assigned to the predefined restore_typo global variable used to
define the type of restoration that must be applied to the screen background after each
game frame. Its value Is 1.

This is the value by default of the restore_type variable and, it is the slowest mode of
the three available restoration modes. The following statement must be used to establish
t h i s v a l u e :

r es to re_ typo=comp le te_ res to re ;

This statement indicates to the manager of processes of DIV Games Studio that, after the
following game's frames the screen background must completely be restored.

Page 264

This mode of restoration (complete_restore) is the siowest one (and it is the option by
defauit). Therefore, it can be changed by another one in order to gain speed in the
execution of the game (so it wiii go faster in siow computers).

As a matter of fact, this mode of restoration is only interesting for games (or for their
sections) that DON'T have a scroli or mode 7 window occupying the whoie screen, but that
have a great number of graphics moving through the screen.

A L T + X • To exit the graphic environment to the operating system.
ESC+Con t ro l - To exit the graphic environment to the operating system.

A L T + S - To execute a session ot the MS-DOS operating system.

E S C - To cancel a dialog box.
T A B - To choose the selected control of a window or box.
E n t e r • To activate the selected control.

F t ■ To invoke the help window.

F 2 - To save the selected program.
F 4 - To open a program.
F 1 0 - To save and execute the selected program.
F i t - To compile the selected program.
F 1 2 - To save and debug the selected program.

C o n t r o l + A L T + P - To save a snapshot of the graphic environment {DIV_*.PCX)

COMMON COMMANDS IN THE QAMES

ESC-fControl - To exit the game.
ALT+X - To ex i t t he game.

Control+ALT+P - To save a snapshot of the game (SNAP'.PCX)
Ft 2 - To invoke the program's debugger.
Pause - To stop the game momentaneously.

- To see or ed i t da ta .

- To debug statement.
-To set a breakpoint.
- Invoke the debugger / Advance frames.

- To execu te t o t he nex t f r ame .

- To se iec t bu t t on .

- To a c t i v a t e b u t t o n .
- To exit the debugger.

C O M M A N D S I N T H E P R O G R /

G e n e r i c c o m m a n d s .

- To go to the beginning of a program's process.
- To expand the size of the seiected program window.

B a s i c m o v e m e n t a n d e d i t c o m m a n d s .

C u r s o r s - B a s i c m o v e m e n t o f t h e c u r s o r .
Home - To go to the beginning of the iine.
End - To go to the end of the line.
P g . D n . - F o i l o w i n g p a g e .
P g . U p - P r e v i o u s p a g e .
Insert - To toggle between insert and overwrite.
D e l e t e - To d e l e t e t h e c h a r a c t e r u n d e r t h e c u r s e r.
Backspace - To delete the character previous to the cursor.
T A B - I n s e r t a t a b i n d e n t .
S h i t t + TA B - To r e m o v e a t a b i n d e n t .
Control+Delete,Control+Y - To delete the current line.
Control+Rlght - Fol lowing word.
C o n t r o i + L e f t - P r e v i o u s w o r d .

Control+Pg.Up - To go to the beginning of the program.
Contrcl+Pg.Dn. - To go to the end of the program.
Control+Home - To go to the beginning of the page.
Control+End - To go to the end of the page.

S e a r c h a n d r e p l a c e m e n t c o m m a n d s .

ALT+F, Cont ro l+F
A LT + N . F 3 . C o n t r o l - i - L
A L T + R . C o n t r o l + R

- To search for a text .

- To repeat search.
- To replace text.

B l o c k s c o m m a n d s 1

ALT+A - To tag ttie beginning or end of a permanent block.
A LT + U - To u n t a g t fi e p e r m a n e n t b l o c k .
ALT+C - To copy thie block to the current position.
ALT+M - To move the block to the current position.
A LT + D , A LT + G - To d e l e t e t h e b l o c k .

B l o c k s c o m m a n d s I

S h i f t + M o v e m e n t - To tag volatile block (Movement keys: Cursors, Control + Right,
Control + Left, Pg.Up, Pg. Dn., Home, End).

S h i f t + l n s e r t
C o n t r o l + l n s e r t

S h i f t + D e l e t e

-To paste block.
- To copy block.
- To cu t b lock .

C o n t r o l + X
C o n t r o l + C
C o n t r o l + V

- To cu t b lock .

- To copy block.
- To paste block.

- To d e l e t e b l o c k .

? M M A N D S I N T H E G R A P H I C I

G e n e r i c c o m m a n d s .

F 1 - T o I n v o k e t h e h e l p w i n d o w .

E S C - To e x i t t h e g r a p h i c e d i t o r .

C u r s o r s , O P / Q A - M o v e m e n t o f t h e c u r s o r.
S p a c e b a r • E q u i v a l e n t t o c l i c k w i t h t h e l e f t m o u s e b u t t o n .
Shift+Movement - 8 by 8 pixel movement.
Shif t+Left button - To take colour from screen.

W,S - To choose co lou r w i th in the cu r ren t range .
S h i f t + W, S - To c h o o s e c u r r e n t r a n g e .
Control+Cursors - To choose colour and range.

Backspace
S h i f t + D e l e t e

- To undo .

-To repeat action (redo).

■ To select the transparent colour.
• To highlight the transparent colour.
■ C o l o u r s w i n d o w.
■ M a s k w i n d o w.

■Tochange the zoom percentage.

Page 270

T o o l s e l e c t i o n c o m m a n d s .

F 1 - D o t t i n g b a r .
F 2 - P e n , f o r t i a n d d r a w i n g .
F 3 - S t r a i g t i t l i n e s .
F 4 - M u l t i l i n e , s t r i n g e d l i n e s .
F 5 - C u r v e s b e z l e r .
F 6 - M u l t i c u r v e , s t r i n g e d c u r v e s .
F 7 - R e c t a n g l e s a n d b o x e s .
F 8 - C i r c l e s a n d c i r c u m f e r e n c e s .
F 9 - P a i n t s p r a y .
F 1 0 - F i l l i n g o f s u r f a c e s .
F 1 1 - B l o c k s e d i t .
F 1 2 - T o u n d o a n d r e d o a c t i o n s .
S h i f t + F 1 - T o w r i t e t e x t s .
Stiift+F2 - To position control points.
S t i i f t + F 3 - D o t t i n g b a r

S p e c i fi c c o m m a n d s .

Con t ro l - To move se lec t i on (ba r : t o se lec t b lock) .
Control - To level width and height (bars; rectangles and circles).
D - To s m o o t h (b a r s : p e n , l i n e s , c u r v e s a n d s p r a y) .
H - To h i d e t h e c u r s o r (b a r : o f f s e t b l o c k) .
+ , - - To vary s t rength (bar : mul t icurve) .

Page 271

Appendix E: Formats Of Archives

This appendix contains technical information for programmers using other languages. This
information is not necessary to develop video games with DIV Games Studio,

'p ' . 'a ' .T
1 A 0 D 0 A 0 0
V e r s i o n

Subtotal: 8 bytes.

3 bytes (ascii
4 bytes (hex)
1 byte (0).

256 colour components:

Subtotal: 768 bytes.

1 byte (0..63).
1 byte (0..63).
1 byte (0..63).

R a n g e o f c o l o u r s (+ 7 7 6 1

16 definitions of range :

Number of colours 1 byte (8,16 o 32),
Type of range 1 byte (0:direct, 1 -2-4-8 editable each "n" colours).
F i x e d 1 b y t e (0 : n o , 1 : y e s)
B l a c k c o l o u r 1 b y t e
Colours in the range 32 bytes (according to type).

Subtotal: 576 bytes.

I o t | y j | | | ^ ^ | | j
Note: To export other formats, which lack the information about the range of colours, to
DIV Games Studio files, the 576 bytes of the ranges must be defined as shown:

16,0,0,16 dup (0),
16,0,0,16 dup (16),
16,0.0,16 dup (32),

16,0.0,16 dup (240)

These 576 bytes cannot be defined as zeros or they would make the file not valid.

Page 274

'rp'.'a'.'p'
1 A 0 D 0 A 0 0
V e r s i o n
W i d t h

Height

3 bytes (ascii).
4 bytes (hex).
1 byte (0).
1 wo rd ,
t w o r d .

Code of the graph 1 double word.
Descr ip t ion 32 by tes (asc l iz) .

Subtotal: 48 bytes.

P a l e t t e (- n t S)

(See file PAL)

Subtotal: 768 bytes.

Ranges of colours (+816)

(See file PAL)

Subtotal: 576 bytes.

C o n t r o l P o i n t s (+ 1 3 9 2)

N u m b e r o f p o i n t s 1 w o r d .

Description of point x Number of points

C o o r d i n a t e x 1 w o r d .
C o o r d i n a t e y t w o r d .

Subtotal: 2+(4 x points number) bytes.

G r a p h i c f ^ a p (- f t S i n t s n u m b e r

Points of the map Width x Height bytes.

Subtotal: Width x Height bytes.

l i n t s n u m b e r W I[W i d t h X H e i i

H e a d (± 0)

' I ' . ' p ' . ' g ' 3 b y t e s (a s c i i) .
1AODOAOO 4 bytes (hex).
Version 1 b^e (0).

Subtotal: 8 bytes.

(See PAL file)

Subtotal: 768 bytes.

Ranges of colours (-f/ys)

(See PAL file)

Subtotal: 576 bytes.

Graphic Maps contained In tfre file (-ft352)

To the end of the file, description of a graphic map.

Code of the graphic.
Length of the record In bytes.
Description
N a m e o f fi l e
W i d t h

Height
P o i n t s n u m b e r

1 d o u b l e w o r d .
1 d o u b l e w o r d .

32 bytes (ascliz).
12 bytes.
1 d o u b l e w o r d .
1 d o u b l e w o r d .
1 d o u b l e w o r d .

Description of point x Points number.

C o o r d i n a t e x 1 w o r d
C o o r d i n a t e y 1 w o r d

Graphic Map

Points of the map Width X Height bytes.

Subtotal (per each map): 64-K4 x points number)+(Wldth x Height)

Total: 1352 + Records of the maps.

Page 276

P R G F i l e s a r e i n t h e s t a n d a r d f o r m a t o f t e x t A S C i l M S - D O S .

r , ' n ' , ' f
1 A 0 D 0 A 0 0
V e r s i o n

Subtotal; 8 bytes.

3 bytes (ascii).
4 bytes (hex).
1 byte (0).

(See PAL file)

Subtotal: 768 bytes.

Ranqes of colours 1+T76)

(See PAL tile)

Subtotal: 576 bytes.

I n f o r m a t i o n o f t h e f o n t (+ 1 3 5 2)

Groups of characters included in the font 1 double word.

+ 1 N u m b e r s .
+2 Capi ta l le t ters .
+ 4 S m a l l l e t t e r s .

+ 8 S y m b o l s .
+ 1 6 E x t e n d e d .

Subtotal: 4 bytes.

F o n t Ta b l e (+ 1 3 5 6)

256 Structures of the characters, as they are described:

W i d t h o f t h e c h a r a c t e r 1 d o u b l e w o r d .

H e i g h t o f t h e c h a r a c t e r 1 d o u b l e w o r d .
V e r t i c a l S l i d e 1 d o u b l e w o r d .
Offset of the graphic in the fi le 1 double word.

Subtotal: 4096 bytes.

E a c h c h a r a c t e r c o m e s i n t h e o f f s e t i n d i c a t e d i n t h e fi l e .

Map of the character Width X Height bytes.

To t a l : 5 4 5 2 + A d d i t i o n o f t h e 2 5 6 f W i d t h x H e i a h t)

G E N E R A L C O N T E N T S

The CD-ROM is divided into three main directories: DAT^i, INSTALL and GAMES.

The DATA directory contains all the main archives of DIV Games Studio which will be
detailed later in this appendix.

The directories INSTALL and GAMES contain the sample games of DIV separately. They
allow you to play with them even if they are not instailed as a tool. Both directories contain in
turn 15 sub-directories more, one for each of the games.

A L I E N - A l i e n S u p r i m e r
B I L L I A R D ■ To t a l B i l l i a r d s

BLASTUP - Blast'em up
COINS - World Bott le Caps Championship
S T E R O I D - S t e r o i d

SPEED - Speed for Dummies
S O C C E R - S o c c e r
C H E C K O U T - C h e c k o u t

F O S T I A T O - F o s t i a t o r
G A L A X - G a l a x

P U Z Z L E - P u z z l e ' o ' m a t i c
N O I D - M o i d

M A LVA D O - T h e c a s t l e o f D r . M a l v a d o

H E L I O B A L - H e l i o b a l l

In the game versions included in INSTALL there is a program called INSTALL.EXE within
the subdirectory of each game. This is the program you have to execute in order to install
the game independently In the computer (without need of Installing DIV Games Studio
too).

However, the directory GAMES contains several versions of these games already installed
which can be run directly from the CD-ROM. The games which have been executed from
the CD-ROM will work all right but they won't include the sound effects. To hear these you'll
have to install these games in the computer hard disk.

C O N T E N T S O F D A T A

This is the main directory and it is divided into the foilowing sub-directories,

DAT - Archives of data of DIV sample games.
DLL - Dynamic link libraries programmed in 0 for DIV.
FLI - An imat ions o f some o f the sample games.
FNT - Archives of fonts of the sample games.
FPG - Files of graphics of the sample games.
HELP - Archives of the electronic help of DiV.
IPS - Types of basic letters for the font generator.
INSTALL - Archives required to create installations.
MAP - Sample games graphics and libraries.
PAL - Several archives with generic colours palettes.
PCM - Sound of the sample games and tutorials.
SETUP - Archives required for the sound set-up.
SYSTEM - Generic archives of DIV Games Studio.

The CD-ROM directories you may wish to access after the program has been installed in
the computer are: IFS, to access the letter fonts; MAP, to access the graphic library; and
PCM to access the sound library.

A summary of the contents of the directories IFS and MAP are shown below so that you can
localise the archives of these directories quickly.

CD-ROM GRAPHIC LIBRARIES

in the directory of DATA\MAP\LIBRARY in the CD-ROM are many maps with graphics
which can be freely used in new videogames created with DIV Games Studio. This directory
is divided into 12 subdirectories which correspond with the different map categories. These

T E X T U R E S
3 D M A N

- Textures for tiles, fillings, etc.
- Human animations in different perspectives.

SPACECRAFT - Several maps with spatial graphics.
EXPLOSIO - Several types of explosion
BLOCKS - Bui lding blocks,
FACES - Several types of faces.
CARS - Car graphics and other related to them.
DECOR - Decor graphics for games.
BACKGROUNDS- Several decorating backgrounds.
GAMES - DIV Sample games graphics.
COUNTRIES - Maps of several countries.
MISCELLANEOUS- Collection of assorted graphics.

DIV Games Studio On The Web

DIV Arena Ms been sei up on the Internet to support the growing community of DIV Games
S t u d i o U s e r s .

Pay It a visit, and be part of the community: WWV ,̂0IV-Afi6NA.C0M

WHAT WILL YOU FIND THERE7
• A d v i c e

• N e w D e m o s
• L a t e s t N e w s
• F o r u m

• Extra Textures, graphics, and sounds
• A d d i t i o n a l c o d e
• T u t o n a l s
• And above all else... a thriving communityl

N O T E
We kindly ask you to let us know anything you consider inieresling lor us, such as unofficial
OtV Websites (In order to Include Iheir links on DIV ARENA), new DLL libraries lor DIV (see
README.TXT file ol Ihe DLDSOURCE directory), auxiliary tools, etc.

We believe it is very important lor everyone interested in this product to have the opportunity
to contact each other so that good development teams can be created: one can specialise
in graphics, another in programming, another in design and so on. Just an idea, but more
heads are better than one.

Page 2B4

FASTTRAK SOFTVyARE PU3LISHIWG, 20 GRE6WHILL CRESCEW
UVIATFORD BUSINESS PARK, WIATFORD, HERTS, WIDl 8XU.
TEL: -hQQ (0)1923 49S496 FAX: -hQC fO)1923 2Pe- \QC

